
High-Precision Computation:
Applications and Challenges

David H. Bailey
http://www.davidhbailey.com

Computational Research Dept., Lawrence Berkeley Natl. Lab.
Computer Science Dept., University of California, Davis

7 April 2013

http://www.davidhbailey.com

How much precision is needed?
For many applications, 32-bit IEEE floating-point arithmetic is
adequate:

I Most graphics and gaming applications.

I Most applications involving experimental data.

I Most signal processing applications.

However, some definitely require 64-bit IEEE arithmetic:

I Certain graphical calculations (e.g., to determine whether two
polygons or curved figures intersect).

I Certain structural problems (elasticity calculations, etc.).

For additional discussion and details:

1. W. Kahan, “A floating-point trick to solve boundary-value problems
faster,” May 2007,
http://www.eecs.berkeley.edu/~wkahan/Math128/FloTrik.pdf.

2. W. Kahan, “On the cost of floating-point computation without
extra-precise arithmetic,” Nov 2004,
http://www.eecs.berkeley.edu/~wkahan/Qdrtcs.pdf.

http://www.eecs.berkeley.edu/~wkahan/Math128/FloTrik.pdf
http://www.eecs.berkeley.edu/~wkahan/Qdrtcs.pdf

Aren’t 64 bits enough?

For some other algorithms and applications, even 64-bit IEEE
arithmetic isn’t sufficient:

I Certain applications with highly ill-conditioned linear systems.

I Large summations, especially those involving cancellations.

I Long-time, iterative simulations.

I Large-scale, highly parallel simulations — numerical
sensitivities are magnified.

I Resolving small-scale phenomena.

I Studies in experimental mathematics.

The notion that high-precision arithmetic is not only useful, but is
in fact essential for numerous important applications has met
significant resistance in the computing community.

D.H. Bailey, R. Barrio, and J.M. Borwein, “High precision computation: Mathematical physics and dynamics,”
Applied Mathematics and Computation, vol. 218 (2012), pg. 10106–10121.

Innocuous example where standard precision is inadequate
Problem: Find a polynomial to fit the data (1, 1048579, 16777489,
84941299, 268501249, 655751251, 1360635409, 2523398179,
4311748609) for arguments 0, 1, · · · , 8. The usual approach is to
solve the linear system:

n
∑n

k=1 xk · · · ∑n
k=1 x

n
k∑n

k=1 xk
∑n

k=1 x
2
k · · · ∑n

k=1 x
n+1
k

...
...

. . .
...∑n

k=1 x
n
k

∑
k=1 x

n+1
k · · · ∑n

k=1 x
2n
k

a0

a1

...
an

 =

∑n
k=1 yk∑n

k=1 xkyk
...∑n

k=1 x
n
k yk

A 64-bit computation (e.g., using Matlab, Linpack or LAPACK)
fails to find the correct polynomial in this instance, even if one
rounds results to nearest integer.

However, if Linpack routines are converted to use double-double
arithmetic (31-digit accuracy), the above computation quickly
produces the correct polynomial:

f (x) = 1 + 1048577x4 + x8 = 1 + (220 + 1)x4 + x8

Algorithm changes versus double-double?
Double-double is the pragmatic choice

The result on the previous page can be obtained with double
precision using Lagrange interpolation or the Demmel-Koev
algorithm. But few scientists, outside of expert numerical analysts,
are aware of these schemes—most people use home-grown code.

Besides, even these schemes fail for higher-degree problems. For
example: (1, 134217731, 8589938753, 97845255883, 549772595201,
2097396156251, 6264239146561, 15804422886323, 35253091827713,
71611233653971, 135217729000001, 240913322581691,
409688091758593) is generated by:

f (x) = 1 + 134217729x6 + x12 = 1 + (227 + 1)x6 + x12

In contrast, a straightforward Linpack scheme, implemented with
double-double arithmetic, works fine for this and a wide range of
similar problems.

Numerical analysis expertise among U.C. Berkeley grads

Of the 2010 U.C. Berkeley graduating class, 870 were in disciplines
expected to use technical computing:

I Division of Mathematical and Physical Sciences
(Mathematics, Physics, Statistics).

I College of Chemistry.

I College of Engineering (including Computer Science).

I Other fields with significant computing: biology, geology,
medicine and social sciences.

Enrollment in numerical analysis:

I Math 128A (Introductory numerical analysis required of math
majors): 219.

I Math 128B (A more advanced course): 24.

Conclusion: Fewer than 2% of Berkeley grads who will do technical
computing have had rigorous training in numerical analysis!

Reproducibility in scientific computing

The report of the recent NSF-funded Workshop on Reproducibility
in Computational and Experimental Mathematics noted:

Numerical round-off error and numerical differences are
greatly magnified as computational simulations are scaled
up to run on highly parallel systems. As a result, it is
increasingly difficult to determine whether a code has
been correctly ported to a new system, because
computational results quickly diverge from standard
benchmark cases. And it is doubly difficult for other
researchers, using independently written codes and
distinct computer systems, to reproduce published results.

The report concluded that high-precision arithmetic was one of the
best ways to ameliorate these numerical difficulties.

V. Stodden, D.H. Bailey, J. Borwein, R. J. LeVeque, W. Rider and W. Stein, “Setting the default to reproducible:
Reproducibility in computational and experimental mathematics,”
http://www.davidhbailey.com/dhbpapers/icerm-report.pdf.

http://www.davidhbailey.com/dhbpapers/icerm-report.pdf

Enhancing reproducibility with high-precision arithmetic

Problem: Find the arc length of the irregular function
g(x) = x +

∑
0≤k≤10 2−k sin(2kx), over the interval (0, π)

(using 107 abscissa points).

I If this computation is done with ordinary
double precision arithmetic, the
calculation takes 2.59 seconds and yields
the result 7.073157029008510.

I If it is done using all double-double
arithmetic, it takes 47.39 seconds seconds
and yields the result 7.073157029007832.

I But if only the summation is changed to
double-double, the result is identical to
the double-double result (to 15 digits), yet
the computation only takes 3.47 seconds.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Graph of g(x) = x+∑
0≤k≤10 2−k sin(2kx),

over (0, π).

Techniques for high-precision computation

I Data is stored as a string of ints or floats, with initial words
holding the string length and binary exponent.

I For modest precision levels (< 1000 digits):

1. Use conventional grade-school schemes for basic arithmetic.
2. Use conventional Taylor series schemes for transcendentals.

I For extra-high precision levels (> 1000 digits):

1. Use FFT-based multiplication and Taylor series division.
2. Use quadratically convergent algorithms for transcendentals.

I Operator overloading (available in Fortran-90, C++ and other
languages) can be exploited to construct high-level translation
interfaces, which greatly simplify conversion of existing code.

1. D.H. Bailey, Y. Hida, X.S. Li and B. Thompson, “ARPREC: An arbitrary precision computation package,”
http://www.davidhbailey.com/dhbpapers/arprec.pdf.

2. Y. Hida, X.S. Li and D.H. Bailey, “Algorithms for quad-double precision floating point arithmetic,” 15th
IEEE Symposium on Computer Arithmetic, IEEE Computer Society, 2001, pg. 155–162.

http://www.davidhbailey.com/dhbpapers/arprec.pdf

Free software for high-precision computation

1. ARPREC. Arbitrary precision, with numerous algebraic and
transcendental functions. High-level interfaces for C++ and
Fortran-90. http://crd.lbl.gov/~dhbailey/mpdist.

2. GMP. Produced by a volunteer effort and distributed under
the GNU license. http://gmplib.org.

3. MPFR. C library for multiple-precision floating-point
computations with exact rounding, based on GMP.
http://www.mpfr.org.

4. MPFR++. High-level C++ interface to MPFR. http:
//perso.ens-lyon.fr/nathalie.revol/software.html.

5. MPFUN90. Similar to ARPREC, but is written entirely in
Fortran-90 and provides only a Fortran-90 interface.
http://crd.lbl.gov/~dhbailey/mpdist.

6. QD. Performs “double-double” (31 digits) and “quad-double”
(62 digits) arithmetic. High-level interfaces for C++ and
Fortran-90. http://crd.lbl.gov/~dhbailey/mpdist.

http://crd.lbl.gov/~dhbailey/mpdist
http://gmplib.org
http://www.mpfr.org
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://crd.lbl.gov/~dhbailey/mpdist
http://crd.lbl.gov/~dhbailey/mpdist

U.C. Berkeley’s CORVETTE project

Developing software tools to find and ameliorate numerical
anomalies in large-scale computations:

I Tools to test the level of numerical accuracy required for an
application.

I Tools to delimit the portions of code that are inaccurate.

I Tools to repair numerical difficulties, including usage of
high-precision arithmetic.

I Tools to navigate through a hierarchy of precision levels
(32-bit, 64-bit or higher as needed).

ARITH21 talks on CORVETTE research:

1. Hong Diep Nguyen and Jim Demmel (UC Berkeley, USA), “Numerical
Accuracy and Reproducibility at ExaScale.”

2. Hong Diep Nguyen and James Demmel (UC Berkeley, USA), “Fast
Reproducible Floating-Point Summation.”

Some applications where high precision is essential

1. Planetary orbit calculations (32 digits).

2. Supernova simulations (32–64 digits).

3. Climate modeling (32 digits).

4. Coulomb n-body atomic system simulations (32–120 digits).

5. Schrodinger solutions for lithium and helium atoms (32 digits).

6. Electromagnetic scattering theory (32–100 digits).

7. Scattering amplitudes of fundamental particles (32 digits).

8. Discrete dynamical systems (32 digits).

9. Theory of nonlinear oscillators (64 digits).

10. Detecting “strange” nonchaotic attractors (32 digits).

11. The Taylor algorithm for ODEs (100–600 digits).

12. Ising integrals from mathematical physics (100–1000 digits).

13. Problems in experimental mathematics (100–50,000 digits).

Long-term planetary orbit calculations

Researchers have recognized for centuries that planetary orbits
exhibit chaotic behavior:

“The orbit of any one planet depends on the combined
motions of all the planets, not to mention the actions of all
these on each other. To consider simultaneously all these
causes of motion and to define these motions by exact laws
allowing of convenient calculation exceeds, unless I am
mistaken, the forces of the entire human intellect.”
[Isaac Newton, Principia, 1687]

Long-term simulations of planetary orbits using double precision do
fairly well for long periods, but then fail at certain key junctures.

Researchers have found that double-double or quad-double
arithmetic is required to avoid severe inaccuracies, even if other
techniques are employed to reduce numerical error.

G. Lake, T. Quinn and D.C. Richardson, “From Sir Isaac to the Sloan survey: Calculating the structure and chaos
due to gravity in the universe,” Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms, 1997, pg. 1–10.

Supernova simulations

I Researchers at LBNL have used
quad-double arithmetic to solve for
non-local thermodynamic equilibrium
populations of iron and other atoms in
the atmospheres of supernovas.

I Iron may exist in several species, so it is
necessary to solve for all species
simultaneously.

I Since the relative population of any state
from the dominant state is proportional to
the exponential of the ionization energy,
the dynamic range of these values can be
very large.

I The quad-double portion now dominates
the entire computation.

P.H. Hauschildt and E. Baron,
“The numerical solution of the
expanding stellar atmosphere
problem,” Journal Computational
and Applied Mathematics, vol.
109 (1999), pg. 41–63.

Climate modeling: High-precision for reproducibility

I Climate and weather simulations are
fundamentally chaotic: if microscopic
changes are made to the current state,
soon the future state is quite different.

I In practice, computational results are
altered even if minor changes are made to
the code or the system.

I This numerical variation is a major
nuisance for code maintenance.

I He and Ding found that by using
double-double arithmetic in two key inner
loops, most of this numerical variation
disappeared.

Y. He and C. Ding, “Using
accurate arithmetics to improve
numerical reproducibility and
stability in parallel applications,”
Journal of Supercomputing, vol.
18, no. 3 (Mar 2001), pg.
259–277.

Coulomb n-body atomic system simulations

I Alexei Frolov of Queen’s University in Canada has used
high-precision arithmetic to solve a generalized eigenvalue
problem that arises in Coulomb n-body interactions.

I Matrices are typically 5,000 x 5,000 and are very nearly
singular.

I Computations typically involve massive cancellation, and
high-precision arithmetic must be employed to obtain
numerically reproducible results.

I Frolov has also computed elements of the Hamiltonian matrix
and the overlap matrix in four- and five-body systems.

I These computations typically require 120-digit arithmetic.

Frolov: “We can consider and solve the bound state few-body
problems ... beyond our imagination even four years ago.”

A.M. Frolov and D.H. Bailey, “Highly accurate evaluation of the few-body auxiliary functions and four-body
integrals,” Journal of Physics B, vol. 36, no. 9 (14 May 2003), pg. 1857–1867.

Taylor’s method for the solution of ODEs
Taylor’s method is one of the oldest numerical schemes for solving
ODEs, but in recent years has re-emerged as a leading choice for
problems in computational dynamics community. Consider the
initial value problem y ′ = f (t, y). The solution at time t = ti is:

y(t0) =: y0,

y(ti) ' yi−1 + f (ti−1, yi−1) hi + · · ·+ 1

n!

dn−1f (ti−1, yi−1)

dtn−1
hni

=: yi

The Taylor coefficients here may be found using automatic
differentiation methods.

One significant advantage with Taylor’s method is that it can be
easily implemented using high-precision arithmetic. When this is
done, Taylor’s method typically gives superior results, compared
with other available schemes.

A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a Taylor series Integrator for Differential EquationS,”
preprint, 2010.

Taylor’s method for ODEs with high-precision arithmetic

−10 0 10 −20
0

200

5

10

15

20

25

30

35

40

45

y
x

z
 1 period - TIDES (16 digits)
 16 periods -TIDES (300 digits)

First point TIDES (16 digits)
First-Last point TIDES (300 digits)

Last point TIDES (16 digits)

Numerical integration of the L25-R25 unstable periodic orbit for
the Lorenz model during 16 time periods using the TIDES code
with 300 digits, and 1 time periods using double precision.

D.H. Bailey, R. Barrio and J.M. Borwein, “High precision computation: Mathematical physics and dynamics,”
Applied Mathematics and Computation, vol. 218 (2012), pg. 10106–10121.

Computing the “skeleton” of periodic orbits

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

limit
m=1
m=2
m=3
m=4

B

A

Symmetric periodic orbits (m denotes the multiplicity of the
periodic orbit) in the most chaotic zone of the (7+2) ring problem
using double (A) and quadruple (B) precision.
R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems,” Chaos,
Solitons and Fractals, vol. 41 (2009), 560–582.

Fractal properties of Lorenz attractors

On the first plot, the intersection of an arbitrary trajectory on the
Lorenz attractor with the section z = 27. The plot shows a
rectangle in the x-y plane. All later plots zoom in on a tiny region
(too small to be seen by the unaided eye) at the center of the red
rectangle of the preceding plot. Hundreds of digits are required.

1. D. Viswanath, “The fractal property of the Lorenz attractor,” Journal of Physics D, vol. 190 (2004),
115–128.

2. D. Viswanath and S. Sahutoglu, “Complex singularities and the Lorenz attractor,” SIAM Review, to appear.

Lions-Mercer iterations
The Lions-Mercer iteration, also known as the Douglas-Rachford or
Feinup iteration, is defined by “reflect, reflect and average”:

x 7→ T (x) :=
x + RA (RB(x))

2

In the simple 2-D case of a horizontal line of height α, we obtain
the explicit iteration:

xn+1 := cos θn, yn+1 := yn + α− sin θn, (θn := arg zn)

For 0 < α < 1, spiraling is ubiquitous. Compare α = 0.95 on left
with α = 1.0 on right:

Exploring iterations using Cinderella

Iterations such as this, as well as many other graphical phenomena,
may be explored using the Cinderella online tool:
http://www.cinderella.de.

Two applets have been defined, working with Cinderella, for
exploring Lions-Mercer iterations:
A1. http://users.cs.dal.ca/?jborwein/reflection.html

A2. http://users.cs.dal.ca/?jborwein/expansion.html

With Applet A1, we observe that as long as the iterate is outside
the unit circle, the next point is always closer to the origin; once
inside the circle the iterates never leave and converge to (1, 0).

Applet A2 demonstrates clear numerical degradation, compared
with similar run using high-precision arithmetic.

http://www.cinderella.de
http://users.cs.dal.ca/?jborwein/reflection.html
http://users.cs.dal.ca/?jborwein/expansion.html

Iterations with Applet A1

Iterations with Applet A2: Double vs multiple precision

Experimental mathematics:
Discovering new mathematical results by computer

Methodology:

1. Compute various mathematical entities (limits, infinite series
sums, definite integrals, etc.) to high precision, typically
100–10,000 digits.

2. Use algorithms such as PSLQ to recognize these numerical
values in terms of well-known mathematical constants.

3. When results are found experimentally, seek formal
mathematical proofs of the discovered relations.

Many results have recently been found using this methodology,
both in pure mathematics and in mathematical physics.

“If mathematics describes an objective world just like physics,
there is no reason why inductive methods should not be applied
in mathematics just the same as in physics.” – Kurt Godel

The PSLQ integer relation algorithm

Let (xn) be a given vector of real numbers. An integer relation
algorithm either finds integers (an) such that

a1x1 + a2x2 + · · ·+ anxn = 0

(to within the “epsilon” of the arithmetic being used), or else finds
bounds within which no relation can exist.

The “PSLQ” algorithm of mathematician-sculptor Helaman
Ferguson is the most widely used integer relation algorithm.

Integer relation detection requires very high precision (at least
n× d digits, where d is the size in digits of the largest ak), both in
the input data and in the operation of the algorithm.

1. H.R.P. Ferguson, D.H. Bailey and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,”
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351–369.

2. D.H. Bailey and D.J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,”
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719–1736.

PSLQ, continued
I PSLQ constructs a sequence of integer-valued matrices Bn

that reduce the vector y = x · Bn, until either the relation is
found (as one of the columns of matrix Bn), or else precision
is exhausted.

I A relation is detected when the size of smallest entry of the y
vector suddenly drops to roughly “epsilon” (i.e. 10−p, where
p is the number of digits of precision).

I The size of this drop can be viewed as a “confidence level”
that the relation is not a numerical artifact: a drop of 20+
orders of magnitude almost always indicates a real relation.

Efficient variants of PSLQ:

I 2-level and 3-level PSLQ perform almost all iterations with
only double precision, updating full-precision arrays as needed.
They are hundreds of times faster than the original PSLQ.

I Multi-pair PSLQ dramatically reduces the number of
iterations required. It was designed for parallel systems, but
runs faster even on 1 CPU.

Decrease of log 10(min |yi |) in multipair PSLQ run

The first major PSLQ discovery: The BBP formula for π

In 1996, a PSLQ program discovered this new formula for π:

π =
∞∑

n=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

This formula permits one to compute binary (or hexadecimal) digits
of π beginning at an arbitrary starting position, using a very simple
scheme that requires only standard 64-bit or 128-bit arithmetic.

In 2004, Borwein, Galway and Borwein proved that no base-n
formulas of this type exist for π, except when n = 2m.

BBP-type formulas (discovered with PSLQ) are now known for
numerous other mathematical constants.

1. D.H. Bailey, P.B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic
constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903–913.

2. J.M. Borwein, W.F. Galway and D. Borwein, “Finding and excluding b-ary Machin-type BBP formulae,”
Canadian Journal of Mathematics, vol. 56 (2004), pg. 1339–1342.

Some other BBP-type formulas found using PSLQ

π2 =
1

8

∞∑
k=0

1

64k

(
144

(6k + 1)2
− 216

(6k + 2)2
− 72

(6k + 3)2
− 54

(6k + 4)2
+

9

(6k + 5)2

)

π2 =
2

27

∞∑
k=0

1

729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(27k + 5)2

− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

)
ζ(3) =

1

1792

∞∑
k=0

1

212k

(
6144

(24k + 1)3
− 43008

(24k + 2)3
+

24576

(24k + 3)3
+

30720

(24k + 4)3

− 1536

(24k + 5)3
+

3072

(24k + 6)3
+

768

(24k + 7)3
− 3072

(24k + 9)3
− 2688

(24k + 10)3

− 192

(24k + 11)3
− 1536

(24k + 12)3
− 96

(24k + 13)3
− 672

(24k + 14)3
− 384

(24k + 15)3

+
24

(24k + 17)3
+

48

(24k + 18)3
− 12

(24k + 19)3
+

120

(24k + 20)3
+

48

(24k + 21)3

− 42

(24k + 22)3
+

3

(24k + 23)3

)

High-precision tanh-sinh numerical integration
Given f (x) defined on (−1, 1), define g(t) = tanh(π/2 sinh t).
Then setting x = g(t) yields

∫ 1

−1
f (x) dx =

∫ ∞

−∞
f (g(t))g ′(t) dt ≈ h

N∑

j=−N
wj f (xj),

where xj = g(hj) and wj = g ′(hj). Since g ′(t) goes to zero very
rapidly for large t, the product f (g(t))g ′(t) typically is a nice
bell-shaped function, so that the simple summation above
converges very rapidly. Reducing h by half typically doubles the
number of correct digits.

We have found that tanh-sinh is the best general-purpose
integration scheme for functions with vertical derivatives or
singularities at endpoints, or for any function at very high precision
(> 1000 digits). Otherwise we use Gaussian quadrature.

1. D.H. Bailey, X.S. Li and K. Jeyabalan, “A Comparison of Three High-Precision Quadrature Schemes,”
Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317–329.

2. H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of
RIMS, Kyoto University, vol. 9 (1974), pg. 721-741.

Ising integrals from mathematical physics

We recently applied our methods to study three classes of integrals
(one of which was referred to us by Craig Tracy of U.C. Davis)
that arise in the Ising theory of mathematical physics:

Cn :=
4

n!

∫ ∞

0
· · ·
∫ ∞

0

1
(∑n

j=1(uj + 1/uj)
)2

du1

u1
· · · dun

un

Dn :=
4

n!

∫ ∞

0
· · ·
∫ ∞

0

∏
i<j

(
ui−uj
ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un

En = 2

∫ 1

0
· · ·
∫ 1

0

 ∏

1≤j<k≤n

uk − uj
uk + uj

2

dt2 dt3 · · · dtn

where in the last line uk = t1t2 · · · tk .
D.H. Bailey, J.M. Borwein and R.E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical
and General, vol. 39 (2006), pg. 12271–12302.

Limiting value of Cn: What is this number?

Key observation: The Cn integrals can be converted to one-
dimensional integrals involving the modified Bessel function K0(t):

Cn =
2n

n!

∫ ∞

0
tKn

0 (t) dt

High-precision numerical values, computed using this formula and
tanh-sinh quadrature, approach a limit. For example:

C1024 = 0.6304735033743867961220401927108789043545870787 . . .

What is this number? We copied the first 50 digits into the online
Inverse Symbolic Calculator (ISC) at
http://carma-lx1.newcastle.edu.au:8087. The result was:

lim
n→∞

Cn = 2e−2γ .

where γ denotes Euler’s constant. This is now proven.

http://carma-lx1.newcastle.edu.au:8087

Other Ising integral evaluations found using PSLQ

D2 = 1/3

D3 = 8 + 4π2/3− 27L−3(2)

D4 = 4π2/9− 1/6− 7ζ(3)/2

E2 = 6− 8 log 2

E3 = 10− 2π2 − 8 log 2 + 32 log2 2

E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?
= 42− 1984Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2

+464 log2 2− 40 log 2

where ζ is the Riemann zeta function and Lin(x) is the polylog
function. D2,D3 and D4 were originally provided to us by Craig
Tracy, who hoped that our tools could help identify D5.

The Ising integral E5

We were able to reduce E5,
which is a 5-D integral, to an
extremely complicated 3-D
integral (see right).

We computed this integral to
250-digit precision, using a highly
parallel, high-precision 3-D
quadrature program. Then we
used a PSLQ program to discover
the evaluation given on the
previous page.

We also computed D5 to 500
digits, but were unable to identify
it. The digits are available if
anyone wishes to further explore.

E5 =

⇧ 1

0

⇧ 1

0

⇧ 1

0

⇤
2(1 � x)2(1 � y)2(1 � xy)2(1 � z)2(1 � yz)2(1 � xyz)2

�
�
⇤
4(x + 1)(xy + 1) log(2)

�
y5z3x7 � y4z2(4(y + 1)z + 3)x6 � y3z

��
y2 + 1

⇥
z2 + 4(y+

1)z + 5) x5 + y2
�
4y(y + 1)z3 + 3

�
y2 + 1

⇥
z2 + 4(y + 1)z � 1

⇥
x4 + y

�
z
�
z2 + 4z

+5) y2 + 4
�
z2 + 1

⇥
y + 5z + 4

⇥
x3 +

��
�3z2 � 4z + 1

⇥
y2 � 4zy + 1

⇥
x2 � (y(5z + 4)

+4)x � 1)] /
⇤
(x � 1)3(xy � 1)3(xyz � 1)3

⌅
+

⇤
3(y � 1)2y4(z � 1)2z2(yz

�1)2x6 + 2y3z
�
3(z � 1)2z3y5 + z2

�
5z3 + 3z2 + 3z + 5

⇥
y4 + (z � 1)2z

�
5z2 + 16z + 5

⇥
y3 +

�
3z5 + 3z4 � 22z3 � 22z2 + 3z + 3

⇥
y2 + 3

�
�2z4 + z3 + 2

z2 + z � 2
⇥
y + 3z3 + 5z2 + 5z + 3

⇥
x5 + y2

�
7(z � 1)2z4y6 � 2z3

�
z3 + 15z2

+15z + 1) y5 + 2z2
�
�21z4 + 6z3 + 14z2 + 6z � 21

⇥
y4 � 2z

�
z5 � 6z4 � 27z3

�27z2 � 6z + 1
⇥
y3 +

�
7z6 � 30z5 + 28z4 + 54z3 + 28z2 � 30z + 7

⇥
y2 � 2

�
7z5

+15z4 � 6z3 � 6z2 + 15z + 7
⇥
y + 7z4 � 2z3 � 42z2 � 2z + 7

⇥
x4 � 2y

�
z3

�
z3

�9z2 � 9z + 1
⇥
y6 + z2

�
7z4 � 14z3 � 18z2 � 14z + 7

⇥
y5 + z

�
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
⇥
y4 +

�
z6 � 14z5 + 3z4 + 84z3 + 3z2 � 14z + 1

⇥
y3 � 3

�
3z5

+6z4 � z3 � z2 + 6z + 3
⇥
y2 �

�
9z4 + 14z3 � 14z2 + 14z + 9

⇥
y + z3 + 7z2 + 7z

+1)x3 +
�
z2

�
11z4 + 6z3 � 66z2 + 6z + 11

⇥
y6 + 2z

�
5z5 + 13z4 � 2z3 � 2z2

+13z + 5) y5 +
�
11z6 + 26z5 + 44z4 � 66z3 + 44z2 + 26z + 11

⇥
y4 +

�
6z5 � 4

z4 � 66z3 � 66z2 � 4z + 6
⇥
y3 � 2

�
33z4 + 2z3 � 22z2 + 2z + 33

⇥
y2 +

�
6z3 + 26

z2 + 26z + 6
⇥
y + 11z2 + 10z + 11

⇥
x2 � 2

�
z2

�
5z3 + 3z2 + 3z + 5

⇥
y5 + z

�
22z4

+5z3 � 22z2 + 5z + 22
⇥
y4 +

�
5z5 + 5z4 � 26z3 � 26z2 + 5z + 5

⇥
y3 +

�
3z4�

22z3 � 26z2 � 22z + 3
⇥
y2 +

�
3z3 + 5z2 + 5z + 3

⇥
y + 5z2 + 22z + 5

⇥
x + 15z2 + 2z

+2y(z � 1)2(z + 1) + 2y3(z � 1)2z(z + 1) + y4z2
�
15z2 + 2z + 15

⇥
+ y2

�
15z4

�2z3 � 90z2 � 2z + 15
⇥

+ 15
⌅
/
⇤
(x � 1)2(y � 1)2(xy � 1)2(z � 1)2(yz � 1)2

(xyz � 1)2
⌅
�

⇤
4(x + 1)(y + 1)(yz + 1)

�
�z2y4 + 4z(z + 1)y3 +

�
z2 + 1

⇥
y2

�4(z + 1)y + 4x
�
y2 � 1

⇥ �
y2z2 � 1

⇥
+ x2

�
z2y4 � 4z(z + 1)y3 �

�
z2 + 1

⇥
y2

+4(z + 1)y + 1) � 1) log(x + 1)] /
⇤
(x � 1)3x(y � 1)3(yz � 1)3

⌅
� [4(y + 1)(xy

+1)(z + 1)
�
x2

�
z2 � 4z � 1

⇥
y4 + 4x(x + 1)

�
z2 � 1

⇥
y3 �

�
x2 + 1

⇥ �
z2 � 4z � 1

⇥

y2 � 4(x + 1)
�
z2 � 1

⇥
y + z2 � 4z � 1

⇥
log(xy + 1)

⌅
/
⇤
x(y � 1)3y(xy � 1)3(z�

1)3
⌅
�

⇤
4(z + 1)(yz + 1)

�
x3y5z7 + x2y4(4x(y + 1) + 5)z6 � xy3

��
y2+

1) x2 � 4(y + 1)x � 3
⇥
z5 � y2

�
4y(y + 1)x3 + 5

�
y2 + 1

⇥
x2 + 4(y + 1)x + 1

⇥
z4+

y
�
y2x3 � 4y(y + 1)x2 � 3

�
y2 + 1

⇥
x � 4(y + 1)

⇥
z3 +

�
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x + 4)y + 4)z � 1
⇥
log(xyz + 1)

⌅
/
⇤
xy(z � 1)3z(yz � 1)3(xyz � 1)3

⌅⇥⌅

/
⇤
(x + 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

⌅
dx dy dz

Recursions in Ising integrals
Consider the 2-parameter class of Ising integrals (which arises in
quantum field theory for odd k):

Cn,k =
4

n!

∫ ∞

0
· · ·
∫ ∞

0

1
(∑n

j=1(uj + 1/uj)
)k+1

du1

u1
· · · dun

un

After computing 1000-digit numerical values for all n up to 36 and
all k up to 75, we discovered (using PSLQ) linear relations in the
rows of this array. For example, when n = 3:

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8

Similar recursions have been found (and proven) for all n.
1. D.H. Bailey, D. Borwein, J.M. Borwein and R.E. Crandall, “Hypergeometric Forms for Ising-Class

Integrals,” Experimental Mathematics, vol. 16 (2007), pg. 257–276.
2. J.M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, vol.

17 (2008), pg. 223–230.

Box integrals
The following integrals appear in numerous applications:

Bn(s) :=

∫ 1

0
· · ·
∫ 1

0

(
r2
1 + · · ·+ r2

n

)s/2
dR

∆n(s) :=

∫ 1

0
· · ·
∫ 1

0

(
(r1 − q1)2 + · · ·+ (rn − qn)2

)s/2
dRdQ

I Bn(1) is average distance of a random point from the origin.

I ∆n(1) is average distance between two random points.

I Bn(−n + 2) is average electrostatic potential in an n-cube
whose origin has a unit charge.

I ∆n(−n + 2) is average electrostatic energy between two
points in a uniform n-cube of charged “jellium.”

I Recently integrals of this type have arisen in neuroscience, e.g.
the average distance between synapses in a mouse brain.

D.H. Bailey, J.M. Borwein and R.E. Crandall, “Box integrals,” Journal of Computational and Applied Mathematics,
vol. 206 (2007), pg. 196–208.

Sample evaluations of box integrals

n s Bn(s)
any even s ≥ 0 rational, e.g., : B2(2) = 2/3

1 s 6= −1 1
s+1

2 -4 − 1
4 − π

8

2 -3 −
√

2

2 -1 2 log(1 +
√

2)

2 1 1
3

√
2 + 1

3 log(1 +
√

2)

2 3 7
5

√
2 + 3

20 log(1 +
√

2)
2 s 6= −2 2

2+s 2F1

(
1
2 ,− s

2 ; 3
2 ;−1

)

3 -5 − 1
6

√
3− 1

12π

3 -4 − 3
2

√
2 arctan 1√

2

3 -2 −3G + 3
2π log(1 +

√
2) + 3 Ti2(3− 2

√
2)

3 -1 − 1
4π + 3

2 log
(
2 +
√

3
)

3 1 1
4

√
3− 1

24π + 1
2 log

(
2 +
√

3
)

3 3 2
5

√
3− 1

60π − 7
20 log

(
2 +
√

3
)

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s
inverse-tan function.

Elliptic integral functions
Research with “ramble” integrals led us to consider these integrals:

I (n0, n1, n2, n3, n4) :=

∫ 1

0
xn0Kn1(x)K ′n2(x)En3(x)E ′n4(x)dx ,

where K ,K ′,E ,E ′ are elliptic integral functions:

K (x) :=

∫ 1

0

dt√
(1− t2)(1− x2t2)

K ′(x) := K (
√

1− x2)

E (x) :=

∫ 1

0

√
1− x2t2

√
1− t2

dt

E ′(x) := E (
√

1− x2)

1. J. Wan, “Moments of products of elliptic integrals,” Advances in Applied Mathematics, vol. 48 (2012), pg.
121–141, http://carma.newcastle.edu.au/jamesw/mkint.pdf.

2. D.H. Bailey and J.M. Borwein, “Hand-to-hand combat with thousand-digit integrals,” Journal of
Computational Science, vol. 3 (2012), pg. 77–86,
http://www.davidhbailey.com/dhbpapers/combat.pdf.

http://carma.newcastle.edu.au/jamesw/mkint.pdf
http://www.davidhbailey.com/dhbpapers/combat.pdf

Relations found among the I integrals
Thousands of relations have been found among the I integrals. For
example, among the class with n0 ≤ D1 = 4 and n1 + n2 + n3
+n4 = D2 = 3 (a set of 100 integrals), we found that all can be
expressed in terms of an integer linear combination of 8 simple
integrals. Some examples:

81

∫ 1

0

x3K 2(x)E(x)dx
?
= −6

∫ 1

0

K 3(x)dx − 24

∫ 1

0

x2K 3(x)dx

+51

∫ 1

0

x3K 3(x)dx + 32

∫ 1

0

x4K 3(x)dx

−243

∫ 1

0

x3K(x)E(x)K ′(x)dx
?
= −59

∫ 1

0

K 3(x)dx + 468

∫ 1

0

x2K 3(x)dx

+156

∫ 1

0

x3K 3(x)dx − 624

∫ 1

0

x4K 3(x)dx − 135

∫ 1

0

xK(x)E(x)K ′(x)dx

−20736

∫ 1

0

x4E 2(x)K ′(x)dx
?
= 3901

∫ 1

0

K 3(x)dx − 3852

∫ 1

0

x2K 3(x)dx

−1284

∫ 1

0

x3K 3(x)dx + 5136

∫
x4K 3(x)dx − 2592

∫ 1

0

x2K 2(x)K ′(x)dx

−972

∫ 1

0

K(x)E(x)K ′(x)dx − 8316

∫ 1

0

xK(x)E(x)K ′(x)dx .

Algebraic numbers in Poisson potential functions
associated with lattice sums

Lattice sums arising from the Poisson equation have been studied
widely in mathematical physics and also in image processing. We
numerically discovered, and then proved, that for rational (x , y),
the two-dimensional Poisson potential function satisfies

φ2(x , y) =
1

π2

∑

m,n odd

cos(mπx) cos(nπy)

m2 + n2
=

1

π
logα

where α is algebraic, i.e., the root of an integer polynomial

0 = a0 + a1α + a2α
2 + · · ·+ anα

n

The minimal polynomials for these α were found by PSLQ
calculations, with the (n + 1)-long vector (1, α, α2, · · · , αn) as
input, where α = exp(πφ2(x , y)). PSLQ returns the vector of
integer coefficients (a0, a1, a2, · · · , an) as output.

1. D.H. Bailey, J.M. Borwein, R.E. Crandall and J. Zucker, “Lattice sums arising from the Poisson equation,”
Journal of Physics A: Mathematical and Theoretical, vol. 46 (2013), pg. 115201,
http://www.davidhbailey.com/dhbpapers/PoissonLattice.pdf.

2. D.H. Bailey and J.M. Borwein, “Compressed lattice sums arising from the Poisson equation: Dedicated to
Professor Hari Sirvastava,” manuscript, http://www.davidhbailey.com/dhbpapers/Poissond.pdf.

http://www.davidhbailey.com/dhbpapers/PoissonLattice.pdf
http://www.davidhbailey.com/dhbpapers/Poissond.pdf

Samples of minimal polynomials found by PSLQ

k Minimal polynomial for exp(8πφ2(1/k, 1/k))
5 1 + 52α− 26α2 − 12α3 + α4

6 1 − 28α + 6α2 − 28α3 + α4

7 −1 − 196α + 1302α2 − 14756α3 + 15673α4 + 42168α5 − 111916α6 + 82264α7

−35231α8 + 19852α9 − 2954α10 − 308α11 + 7α12

8 1 − 88α + 92α2 − 872α3 + 1990α4 − 872α5 + 92α6 − 88α7 + α8

9 −1 − 534α + 10923α2 − 342864α3 + 2304684α4 − 7820712α5 + 13729068α6

−22321584α7 + 39775986α8 − 44431044α9 + 19899882α10 + 3546576α11

−8458020α12 + 4009176α13 − 273348α14 + 121392α15

−11385α16 − 342α17 + 3α18

10 1 − 216α + 860α2 − 744α3 + 454α4 − 744α5 + 860α6 − 216α7 + α8

The minimal polynomial for exp(8πφ2(1/32, 1/32)) has degree
128, with individual coefficients ranging from 1 to over 1056. This
PSLQ computation required 10,000-digit precision. See next page.

Other polynomials required up to 50,000-digit precision.

Degree-128 minimal polynomial for exp(8πφ2(1/32, 1/32))

Cautionary example
These constants agree to 42 decimal digits, but are NOT equal:

∫ ∞

0

cos(2x)
∞∏

n=1

cos(x/n)dx =

0.392699081698724154807830422909937860524645434187231595926
π

8
=

0.392699081698724154807830422909937860524646174921888227621

Richard Crandall has shown that this integral is merely the first
term of a very rapidly convergent series that converges to π/8:

π

8
=

∞∑

m=0

∫ ∞

0
cos[2(2m + 1)x]

∞∏

n=1

cos(x/n) dx

1. D.H. Bailey, J.M. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,”
American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481–409.

2. R.E. Crandall, “Theory of ROOF Walks,” 2007, available at
http://people.reed.edu/~crandall/papers/ROOF.pdf.

http://people.reed.edu/~crandall/papers/ROOF.pdf

Limitations of Maple and Mathematica

Maple and Mathematica are our first choices whenever symbolic or
numeric computations are required. However, both have
limitations and bugs.

For example, in a study of Mordell-Tornheim-Witten sums (which
arise in mathematical physics), we required high-precision numeric
values of derivatives with respect to the order s of polylogarithms:

∂Lis(z)

∂s
, where Lis(z) =

∞∑

k=1

zk

ks

Maple was not able to numerically evaluate these derivatives at all.
Mathematica, when asked for 4000 digits, returned only 400
correct digits (at some arguments).
D.H. Bailey, J.M. Borwein and R.E. Crandall, “Computation and theory of extended Mordell-Tornheim-Witten
sums,” Mathematics of Computation, Ramanujan Journal, 27 Feb 2013, DOI 10.1007/s11139-012-9427-1,
http://www.davidhbailey.com/dhbpapers/BBC.pdf.

http://www.davidhbailey.com/dhbpapers/BBC.pdf

What is needed for high-precision floating-point software?

I A high-performance, rock-solid-reliable arithmetic engine, with
precision scalable to 1,000,000 digits or more.

I A separate package for modest precision (32 and 64 digits)?

I FFT-based multiplication for > 1000 digits.

I A thread-safe design to facilitate multicore parallel processing,
and a pathway to extend to graphics processing units (GPUs).

I A comprehensive library of tuned transcendentals: not just
sin, cos, exp, etc., but also the gamma function, polylogs
(with real and complex arguments), Bessel functions, etc.

I A robust high-level language interface for C++, Fortran-90
and possibly several other languages as well.

I Interfaces for Maple and Mathematica.

This talk is available at
http://www.davidhbailey.com/dhbtalks/dhb-high-precision.pdf.

http://www.davidhbailey.com/dhbtalks/dhb-high-precision.pdf

