On-the-Fly Multi-Base Recoding for ECC Scalar Multiplication without Pre-Computations

Thomas Chabrier and Arnaud Tisserand

IRISA-CAIRN

ARITH 21, Austin, TX, USA, April 7-10, 2013

Elliptic Curve Cryptography (ECC)

Elliptic curve over \mathbb{F}_p :

$$E: \quad y^2 = x^3 + ax + b$$

Curve points representation:

Scalar multiplication:

- P = (x, y) affine coordinates (A)
 - e many field inversions
- P = (x, y, z, ...) redundant coordinates
 Significantly faster
 here we use Jacobian coordinates (, *T*)

 $Q = [k]P = \underbrace{P + P + \dots + P}_{k \text{ times}}$

where $P \in E$ and $k = (k_{n-1}k_{n-2} \dots k_1 k_0)_2$

The most time consuming operation in protocols

k has 160–600 bits

Good and complete presentation in [17] or [7] T. Chabrier & A. Tisserand, IRISA. *On-the-Fly MBNS Recoding for ECCSM without Pre-Computations*

2/22

Basic Scalar Multiplication $Q = [k]P = \underbrace{P + P + \dots + P}_{k \text{ times}} \qquad \bullet P \in E$ $\bullet k = (k_{n-1}k_{n-2}\dots k_1k_0)_2$

Double-and-add scalar multiplication algorithm:

1: $Q \leftarrow O$	
2: for <i>i</i> from $n-1$ to 0 do	
3: $Q \leftarrow [2]Q$	(DBL)
4: if $k_i = 1$ then $Q \leftarrow Q + P$	(ADD)
5: return Q	

- scans each bit of k and performs corresponding curve-level operation
- average cost: 0.5n ADD + n DBL (security $\rightarrow \approx 0.5n$ ones in k)
- ADD at line 4 always uses the same point $P \longrightarrow$ keep P in affine and use mADD $(\mathcal{J} + \mathcal{A} \rightarrow \mathcal{J})$

Curve Level and Field Level Operations

point								
addition	doubling	tripling	quintupling	septupling	• • •			
ADD	DBL	TPL	QPL	SPL				
P+Q	[2] <i>P</i>	[3] <i>P</i>	[5] <i>P</i>	[7] <i>P</i>				
if	=	=						
$P eq \pm Q$	P + P	P+P+P	$P + \cdots + P$	$P + \cdots + P$				

operation at curve level \longrightarrow sequence of ($\approx 10 - 20$) operations at field level

field level op.: add/sub, multiplication: M, square: S, inversion: I

Faster Scalar Multiplication Algorithms

Representation of k impacts #operations \longrightarrow recode k:

- non-adjacent forms (NAF/wNAF): high-radix signed-digits representations -> increase #0s
- double-base number systems (DBNS): x = ∑_{i=1}^{n'} d_ib₁^{u_i} b₂^{v_i} with d_i = ±1 b₁ and b₂ co-prime integers (typically (b₁, b₂) = (2, 3)) specific op.: point tripling [3]P = P + P + P denoted TPL decreasing exponents (Horner form) → higher speed
- multi-base number systems (MBNS): more than two bases (co-prime integers), e.g. (2,3,5) and (2,3,5,7) $x = \sum_{i=1}^{n'} (d_i \prod_{j=1}^{l} b_j^{e_{j,i}})$ with $d_i = \pm 1$

BUT those recoding methods require pre-computations:

- wNAF: pre-compute and store $P_j = [j]P \quad \forall j \in \{3, 5, \dots, 2^{w-1} 1\}$
- DBNS/MBNS recoding is performed off-line

Remark: point subtraction (SUB) is as efficient as point addition

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations	
--	--

Our Goals

MBNS recoding and ECC scalar multiplication:

- fully implemented in FPGA (ASIC version is underway)
- without pre-computations
- recoding is performed in parallel to curve-level operations
- fine tuning of architecture parameters
- presented for curves defined over F_p (due to space limit) also works for F_{2^m} with slightly different fine tuning

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Notations

- $k = (k_{n-1}k_{n-2}...k_1k_0)_2$, k > 1, the *n*-bit scalar stored into *t* words of *w* bits with $w(t-1) < n \le wt$ (i.e. last word may be 0-padded). $k^{(i)}$ the *i*th word of *k* starting from least significant for $0 \le i < t$
- \mathcal{B} the multi-base with l base elements (co-prime integers), $\mathcal{B} = (b_1, b_2, \dots, b_l)$
- predicate divisible(x, B) returns true if x is divisible by at least one base element in B (false for other cases)
- number x represented as the sum of terms $x = \sum_{i=1}^{n'} \left(d_i \prod_{j=1}^{l} b_j^{e_{j,i}} \right)$ with $d_i \in \{0, \pm 1\}$ and in Horner form
- term $(d_i, e_{1,i}, e_{2,i}, \dots, e_{l,i})$ defined by $d_i \times \prod_{j=1}^{l} b_j^{e_{j,i}}$ in \mathcal{B} (index *i* may be omitted when context is clear)
- Q, P curve points and Q = [k]P scalar multiplication

7/22

5/22

Very Simple MBNS Unsigned Recoding Algorithm Transforms k into a list of terms (LT) in Horner form

1:	$LT \leftarrow \emptyset$	
2:	while $k > 1$ do	
3:	if $\mathrm{not}ig(\mathrm{divisible}(k,\mathcal{B}) ig)$ then	(divisibility test)
4:	$d \leftarrow 1$	
5:	$k \leftarrow k-1$	
6:	else	
7:	$d \leftarrow 0$	
8:	for j from 1 to $/$ do	
9:	$e_j \leftarrow 0$	
10:	while $k \equiv 0 \mod b_j$ do	(divisibility test)
11:	$e_j \gets e_j + 1$	
12:	$k \leftarrow k / b_j$	(exact division)
13:	$LT \leftarrow LT \cup (d, e_1, e_2, \ldots, e_l)$	
14:	return LT	

Remark: divisibility tests at line 3 and 10 are shared

Very Simple MBNS Scalar Multiplication Algorithm

- MBNS recoding works in a serial way starting with most significant
- each term can be immediately used in the scalar multiplication
 - -> recorded terms are processed and used on-the-fly
- multi-base adaptation of standard left-to-right scalar multiplication ([17, Sec. 3.3.1])

1: $Q \leftarrow O$	
2: foreach t in LT do	$(t = (d, e_1, e_2, \ldots, e_l))$
3: $Q \leftarrow Q + d \times P$	$(d \in \{0, 1\} \Rightarrow \texttt{NOP}/\texttt{ADD})$
4: for <i>j</i> from 1 to / do	
5: $P \leftarrow \begin{bmatrix} b_i^{e_j} \end{bmatrix} P$	(DBL, TPL, QPL,)
6: $Q \leftarrow Q + P$	
7: return Q	

Remark 1: recoding and curve-level operations are overlapped Remark 2: P is modified over time, we cannot use mADD (time penalty) Remark 3: d = 0 is only possible for the very first term

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

9/22

Implementation of Divisibility Tests (1/2)

We use Pascal's tapes, [28] (published in 1819), [31], values are $2^i \mod b_j$:

	i											
bj	11	10	9	8	7	6	5	4	3	2	1	0
3	2	1	2	1	2	1	2	1	2	1	2	1
5	3	4	2	1	3	4	2	1	3	4	2	1
7	4	2	1	4	2	1	4	2	1	4	2	1

For $b_j = 3$, the periodic sequence is $(21)^*$:

$$k \mod 3 = (\dots + 2^{3}k_{3} + 2^{2}k_{2} + 2^{1}k_{1} + k_{0}) \mod 3$$
$$= (\dots + 2k_{3} + k_{2} + 2k_{1} + k_{0}) \mod 3$$
$$= \left(\underbrace{\sum (2k_{2i+1} + k_{2i})}_{\alpha}\right) \mod 3.$$

Implementation of Divisibility Tests (2/2)

To avoid complex decoding, we use w = lcm(2, 4, 3) = 12 and w = 24

FPGA results for n = 160 (XC5VLX50T, ISE 12.4, std efforts S/P&R):

	area	freq.	clock
w	slices (FF/LUT)	MHz	cycles
12	25 (40/81)	543	<i>t</i> + 3
24	67 (53/152)	549	<i>t</i> + 4

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Implementation of Exact Division by b_i Elements (1/2)

Exact division k/b_j : we know that k is divisible by b_j Algorithm from [19] (LSWF), optimized for FPGA and $b_j \in \{3, 5, 7\}$:

-	
1:	$c \leftarrow 0$
2:	for i from 0 to $t-1$ do
3:	$r \leftarrow k^{(i)} - c$
4:	$r \leftarrow r \times (b_i^{-1} \mod 2^w)$
5:	$c \leftarrow 0$
6:	for h from 1 to $b_j - 1$ do
7:	if $r \ge h \times \lceil (2^w - 1)/b_j \rceil$ then
8:	$c \leftarrow c+1$
9:	$k^{(i)} \leftarrow (r_{w-1} \cdots r_0)$
10:	return k

bj	$b_j^{-1} ext{ mod } 2^{12}$, γ	$b_j^{-1} ext{ mod } 2^{24}$, γ
3	(101010101011) ₂ , 3	(10101010101010101010101) ₂ , 4
5	(110011001101) ₂ , 3	(11001100110011001101) ₂ , 4
7	(110110110111) ₂ , 3	(110110110110110110110111) ₂ , 4

We use our multiplication by constant algorithm [4]

10/22

FPGA results for n = 160 (XC5VLX50T, ISE 12.4, std efforts S/P&R):

	area	freq.	clock
w	slices (FF/LUT)	MHz	cycles
12	59 (138/171)	291	t + 4
24	152 (441/448)	202	t+5

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

13/22

Unsigned Multiple-Base Recoding Unit

FPGA results for n = 160 and B = (2, 3, 5, 7) (XC5VLX50T, ISE 12.4, std efforts S/P&R):

	area	freq.
w	slices (FF/LUT)	MHz
12	153 (301/412)	232
24	323 (682/908)	202

Remark: DTD-2 divisibility test and division by $2^{1...v}$ with $v \le w$ T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

14/22

Example

 $87 = 0 + 3^1 \times (1 + 2^2 7^1)$

Notations:

- "CLO" denotes curve-level operations
- DT denotes divisibility test, "res." their results
- "/b_j" exact division by b_j

Remark: very short latency at the very beginning (< 0.01 % of [k]P for n = 160 and even less for larger fields)

15/22

Signed Digits Version: $d \in \{0, \pm 1\}$

Add a selection function S in the recoding algorithm:

	unsigned version	-		signed version
4:	$d \leftarrow 1$	\rightarrow	4:	$d \leftarrow S(k)$
5:	$k \leftarrow k-1$		5:	$k \leftarrow k - d$

We compared 4 heuristic selection functions:

- approx: approximated minimum value selection function
- max_nb_div: maximum number of divisors selection function
- min2: 2 steps minimum value selection function

1)
$$(k - 1, k + 1) \xrightarrow{\min} (k', k'')$$

2) $(k' - 1, k' + 1, k'' - 1, k'' + 1) \xrightarrow{\min 2} (\zeta', \zeta'', \zeta''', \zeta''')$

Computing (k', k'') is expensive, so we try to get an approximation

$$k' \approx \delta' = \underbrace{\lfloor \log_2(k-1) \rfloor + 1}_{\text{MSB position of } k-1} - \sum_{j=1}^{l} e'_j \log_2(b_j)$$
$$k'' \approx \delta'' = \underbrace{\lfloor \log_2(k+1) \rfloor + 1}_{\text{MSB position of } k+1} - \sum_{j=1}^{l} e''_j \log_2(b_j)$$

1) Exponents e'_i and e''_i are produced by the divisibility tests

2) Approximate constants: $\log_2 3 \approx 1.59$, $\log_2 5 \approx 2.32$, and $\log_2 7 \approx 2.81$

$$\delta' = MSB(k-1) - e_{b_1=2} - 1.5e_{b_2=3} - 2.25e_{b_3=5} - 2.75e_{b_4=7}$$
T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

17/22

Comparison of Selection Functions

For curves over \mathbb{F}_p with a = -3:

Average computation time (in ${\tt M})$ of 10 000 scalar multiplications with 160-bit values

Similar behavior for curves with $a \neq -3$

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

18/22

Complete FPGA Implementation Results

Signed recoding unit with approx heuristic:

	area	freq.
w	slices (FF/LUT)	MHz
12	173 (326/466)	232
24	345 (724/1005)	202

ECC processor (modification from [6], collab. UCC crypto group):

	memory	area	freq.	
version	type	slices (FF/LUT)	BRAM	MHz
small	distributed	2 204 (3 971/6 816)	0	155
Silidii	BRAM	1 793 (3 641/6 182)	6	155
largo	distributed	3 182 (4 668/7 361)	0	142
large	BRAM	2 427 (4 297/6 981)	6	142

small: F_p curves, n = 160, Jacob. coord., NAF/MBNS, 1 unit/op.
large: same with 4NAF/MBNS and 2 ±, 2 ×, 1 inv.

[k]P Timings Comparison

For n = 160 and $a \neq -3$:

			pre-computations		
refs.	methods	perfs	storage	operations	recoding
	dbl&add	1985.3M	Ø	Ø	Ø
	NAF	1723.0M	Ø	Ø	on-the-fly & very cheap
	3NAF	1583.7M	1 pt	49.4M	on-the-fly & very cheap
	4NAF	1499.1M	3 pts	140.8M	on-the-fly & very cheap
[10]	DBNS	1863.0M	Ø	Ø	off-line & costly
[11]	DBNS	1722.3M	Ø	Ø	off-line & costly
[3]	DBNS	1558.4M	7 pts	>150M	off-line & costly
[15]	DBNS	1615.3M	Ø	Ø	off-line & costly
	(2,3) MBNS	1746.2M	Ø	Ø	on-the-fly & small
our	(2,3,5) MBNS	1679.9M	Ø	Ø	on-the-fly & small
	(2, 3, 5, 7) MBNS	1670.4M	Ø	Ø	on-the-fly & small

For n = 160 and a = -3: about 15% slower than best DBNS/MBNS (theoretical) solutions

Conclusion & Future Prospects

- first full hardware implementation of MBNS recoding and ECC scalar multiplication
- even a simple MBNS recoding is:
 - \blacktriangleright not so slow $\approx +15\%$ compared the fastest solutions
 - not so big $\approx +10\%$ on Virtex 5 FPGAs

Future works:

- ASIC version (underway)
- advanced recodings for higher speed and better protection against SCAs

Acknowledgments:

- Prof. Christiane Frougny for historical references
- Anonymous reviewers for their valuable comments
- Région Bretagne / Conseil Général des Côtes d'Armor (ROBUSTA prj): PhD grant
- PAVOIS project (ANR 12 BS02 002 01): partial funding

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

21/22

The end, some questions ?

Contact:

- mailto:arnaud.tisserand@irisa.fr
- http://people.irisa.fr/Arnaud.Tisserand/
- CAIRN Group http://www.irisa.fr/cairn/
- IRISA Laboratory, CNRS-INRIA-Univ. Rennes 1
- 6 rue Kerampont, CS 80518, F-22305 Lannion cedex, France

Thank you

http://pavois.irisa.fr/

ANR PAVOIS • ANR • IRISA

- ANR Project ANR 2012-2016
- IRISA (Lannion) + LIRMM (Perpignan & Montpellier)
- Arithmetic Protections Against Physical Attacks for Elliptic Curve based Cryptography
- T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

22/22

References by Topics

- ECC: [17] and [7]
- DBNS: [9], [12], [13], [10], [15], [2], [3], [14] and [11]
- MBNS: [26], [21], [23], [29], [32], [1] and [30]
- Side-channel attacks and counter-measures: [25], [27] [20], [8], [5]
- Pascal's tape: [28], [31]
- Exact division: [19]
- Multiplication by constant: [4]
- . . .

23/22

References I

- J. Adikari, V. S. Dimitrov, and L. Imbert. Hybrid binary-ternary number system for elliptic curve cryptosystems. *IEEE Transactions on Computers*, 60(2):254–265, February 2011.
- [2] R. Barua, S. K. Pandey, and R. Pankaj. Efficient window-based scalar multiplication on elliptic curves using double-base number system. In Proc. 8th International Conference on Progress in Cryptology (INDOCRYPT), volume 4859 of LNCS, pages 351–360. Springer, December 2007.
- [3] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. Optimizing double-base elliptic-curve single-scalar multiplication. In Proc. 8th International Conference on Progress in Cryptology (INDOCRYPT), volume 4859 of LNCS, pages 167–182. Springer, December 2007.
- N. Boullis and A. Tisserand. Some optimizations of hardware multiplication by constant matrices. IEEE Transactions on Computers, 54(10):1271–1282, October 2005.
- [5] A. Byrne, N. Meloni, A. Tisserand, E. M. Popovici, and W. P. Marnane. Comparison of simple power analysis attack resistant algorithms for an elliptic curve cryptosystem *Journal of Computers*, 2(10):52–62, 2007.
- [6] A. Byrne, E. Popovici, and W.P. Marnane. Versatile processor for gf(p^m) arithmetic for use in cryptographic applications. IET Computers & Digital Techniques, 2(4):253–264, July 2008.
- [7] H. Cohen and G. Frey, editors. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2005.
- J.-S. Coron. Resistance against differential power analysis for elliptic curve cryptosystems. In Proc. Cryptographic Hardware and Embedded Systems (CHES), volume 1717 of LNCS, pages 292–302. Springer, August 1999.
- T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

References II

- V. Dimitrov and T. Cooklev.
 Hybrid algorithm for the computation of the matrix polynomial I + A + ... + A^{N-1}.
 IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(7):377–380, July 1995.
- [10] V. Dimitrov, L. Imbert, and P. K. Mishra. Efficient and secure elliptic curve point multiplication using double-base chains. In Proc. 11th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT), volume 3788 of LNCS, pages 59–78. Springer, December 2005.
- [11] V. Dimitrov, L. Imbert, and P. K. Mishra. The double-base number system and its application to elliptic curve cryptography. *Mathematics of Computation*, 77(262):1075–1104, April 2008.
- [12] V.S. Dimitrov, G.A. Jullien, and W.C. Miller. An algorithm for modular exponentiation. Information Processing Letters, 66(3):155–159, May 1998.
- [13] V.S. Dimitrov, G.A. Jullien, and W.C. Miller. Theory and applications of the double-base number system. *IEEE Trans. on Computers*, 48(10):1098–1106, October 1999.
- [14] C. Doche and L. Habsieger. A tree-based approach for computing double-base chains. In Proc. 13th Australasian Conference on Information Security and Privacy, volume 5107 of LNCS, pages 433–446, July 2008.
- [15] C. Doche and L. Imbert. Extended double-base number system with applications to elliptic curve cryptography. In Proc. 7th International Conference on Cryptology (INDOCRYPT), volume 4329 of LNCS, pages 335–348, Kolkata, India, December 2006. Springer.
- P. Giorgi, L. Imbert, and T. Izard.
 Optimizing elliptic curve scalar multiplication for small scalars.
 In Proc. Mathematics for Signal and Information Processing, volume 7444, pages 74440N:1-10. SPIE, September 2009.

T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations 25/22

References III

- [17] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer, 2004. [18] K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara. Fast implementation of public-key cryptography on a DSP TMS320C6201. In Proc. Cryptographic Hardware and Embedded Systems (CHES), volume 1717 of LNCS, pages 61-72. Springer, August 1999 [19] T. Jebelean An algorithm for exact division. Journal of Symbolic Computation, 15(2):169-180, February 1993 [20] M. Joye. Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture Note, chapter Defenses Against Side-Channel Analysis, pages 87-100. Cambridge University Press, April 2005 [21] P. Longa. Accelerating the scalar multiplication on elliptic curve cryptosystems over prime fields. Master's thesis, Univ. Ottawa, 2007 [22] P. Longa and C. Gebotys. Setting speed records with the (fractional) multibase non-adjacent form method for efficient elliptic curve scalar multiplication. Technical Report 118, Cryptology ePrint Archive, 2008. [23] P. Longa and C. Gebotys. Fast multibase methods and other several optimizations for elliptic curve scalar multiplication. In Proc. Public Key Cryptography (PKC), volume 5443 of LNCS, pages 443-462, 2009. [24] P. Longa and A. Miri. New multibase non-adjacent form scalar multiplication and its application to elliptic curve cryptosystems. Technical Report 52, IACR Eprint, 2008
 - T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

References IV

- [25] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, 2007.
- [26] P. K. Mishra and V. Dimitrov. Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation. In Proc. 10th International Conference on Information Security (ISC), volume 4779 of LNCS, pages 390–406, October 2007
- [27] E. Oswald.

Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture Note Series, chapter Side Channel Analysis, pages 69-86. Cambridge University Press, April 2005.

[28] B. Pascal.

 ${ {\it Euvres complètes, volume 5, chapter De Numeribus Multiplicibus, pages 117–128. Librarie Lefèvre, 1819. }$

[29] G. N. Purohit and A. S. Rawat.

Fast scalar multiplication in ECC using the multi base number system. International Journal of Computer Science Issues, 8(1):131–137, May 2011.

[30] G.N. Purohit, A. S. Rawat, and M. Kumar.

Elliptic curve point multiplication using MBNR and point halving. International Journal of Advanced Networking and Applications, 3(5):1329–1337, 2012.

[31] J. Sakarovitch. Elements of Automata Theory, chapter Prologue: M. Pascal's Division Machine, pages 1–6. Cambridge, 2009.

[32] X. Yin, T. Yang, and J. Ning. Optimized approach for computing multi-base chains. In Proc. 7th International Conference on Computational Intelligence and Security (CIS), pages 964–968. IEEE, December 2011.

Backup Slides

26/22

Costs of Curve Level Operations

Best computation costs from literature and curves over \mathbb{F}_p

а		curve-level operations					
-3	refs.	ADD	mADD	DBL	TPL	QPL	SPL
	EFD	11M + 5S	7M + 4S	1M + 8S	5M + 10S	n. a.	n. a.
\neq	[16]	n. a.	n. a.	1M + 8S	5M + 10S	7M + 16S	15M + 24S
	[22]	11M + 5S	7M + 4S	2M + 8S	6M + 11S	9M + 15S	13M + 18S
	EFD	11M + 5S	7M + 4S	3M + 5S	7M + 7S	n. a.	n. a.
=	[24]	11M + 5S	7M + 4S	3M + 5S	7M + 7S	$11\mathrm{M}+11\mathrm{S}$	18M + 11S
	[23][22]	11M + 5S	7M + 4S	3M + 5S	7M + 8S	10M + 12S	14M + 15S
	refs.	$\lambda ext{DBL}$				$\lambda {\tt TPL}$	
\neq	[10][11][18]	$4\lambda \mathtt{M} + (4\lambda + 2)\mathtt{S} \qquad (11\lambda - 1)\mathtt{M} + (4\lambda + 2)\mathtt{S}$					+ 2)S
	refs.	λ TPL / λ' DBL					
\neq	[10][11]	$(11\lambda+4\lambda'-1)$ M $+(4\lambda+4\lambda'+3)$ S					

EFD: Explicit-Formulas Database http://hyperelliptic.org/EFD

$\texttt{mADD}: \mathcal{A} + \mathcal{J} \longrightarrow \mathcal{J}$	
T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations	29/22

Randomized Selection Function

When k is not divisible by B elements, S returns d = 1 or d = -1 randomly as a simple protection against some side-channel attacks

Average computation times for $a \neq -3$ and 10000 random scalars:

	rnd		min		diff.	
${\cal B}$	М	#ADD	М	#ADD	[%]	
(2,3)	1 960.5	49.3	1738.5	34.0	12.8	
(2,3,5)	1843.0	39.8	1673.7	28.0	10.1	
(2,3,5,7)	1811.4	34.8	1670.0	24.8	8.5	
(2,3,5,7,11)	1816.7	32.1	1 693.5	22.9	7.3	

DBNS and MBNS are very redundant and sparse representations

Security efficiency has to be evaluated

Statistical Timings of Unsigned MBNS Scalar Multiplication

Goal: selection of \mathcal{B} elements

- complete [k]P timings (in M) for 10000 random 160-bit values
- most efficient multi-base is $\mathcal{B} = (2, 3, 5, 7)$
- adding $b_j = 11$ does not improve the performance while it makes the architecture larger and slower
- $b_1 = 2$ for all configurations (k is received in binary)
- T. Chabrier & A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Comparisons for n = 160 and a = -3

			pre-computations		
references	methods	performances	storage	operations	recoding
	double-and-add	1 922.0M	Ø	Ø	Ø
	NAF	1659.7M	Ø	Ø	on-the-fly & very cheap
	3NAF	1 520.2M	1 point	49.0M	on-the-fly & very cheap
	4NAF	1 436.1M	3 points	140.0M	on-the-fly & very cheap
[15]	DBNS	1 563.2M	Ø	Ø	off-line & costly
[3]	DBNS	1 504.3M	7 points	>150M	off-line & costly
		1645.4M	Ø	Ø	off-line & costly
		1606.4M	1 point	\approx 45M	off-line & costly
[26]	(2, 3, 5)MBNS	1566.4M	3 points	≈ 150 M	off-line & costly
		1 552.3M	7 points	>150M	off-line & costly
		1486.4M	5 points	>150M	off-line & costly
	(2, 3)NAF	1514.0M	Ø	Ø	small
	(2, 3, 5)NAF	1 490.0M	Ø	Ø	small
	(2, 3, 5, 7)NAF	1491.0M	Ø	Ø	small
	(2, 3)NAF ₃	1460.0M	1 point	\approx 45M	small
[24]	(2, 3, 5)NAF ₃	1444.0M	1 point	\approx 45M	small
	(2, 3, 5, 7)NAF ₃	1449.0M	1 point	\approx 45M	small
	(2, 3)NAF ₄	1 384.0M	3 points	>150M	small
	(2, 3, 5)NAF ₄	1 383.0M	3 points	>150M	small
	(2, 3, 5, 7)NAF ₄	1 394.0M	3 points	>150M	small
[23]	(2, 3, 5)NAF	1460.0M	Ø	Ø	costly
[23]	(2, 3, 5)NAF	1 426.0M	6 points	>150M	costly
	(2, 3)MBNS	1 686.2M	Ø	Ø	on-the-fly & small
this work	(2, 3, 5)MBNS	1631.0M	Ø	Ø	on-the-fly & small
	(2 3 5 7)MBNS	1.629.3M	Ø	Ø	on-the-fly & small