Elliptic Curve Cryptography (ECC)

Elliptic curve over \mathbb{F}_{p} :

$$
E: \quad y^{2}=x^{3}+a x+b
$$

Curve points representation:

- $P=(x, y)$ affine coordinates (\mathcal{A})
(2) many field inversions
- $P=(x, y, z, \ldots)$ redundant coordinates () significantly faster
here we use Jacobian coordinates (\mathcal{J})

Scalar multiplication:

$$
Q=[k] P=\underbrace{P+P+\cdots+P}_{k \text { times }}
$$

where $P \in E$ and $k=\left(k_{n-1} k_{n-2} \ldots k_{1} k_{0}\right)_{2}$
he most time consuming operation in protocols
k has $160-600$ bits

Good and complete presentation in [17] or [7]
Chabrier \& A. Tisserand. IRISA. On-the-FIy MBNS Recoding for ECCSM without Pre-Computations

Curve Level and Field Level Operations

point					
addition	doubling	tripling	quintupling	septupling	\cdots
ADD	DBL	TPL	QPL	SPL	\cdots
$P+Q$	$[2] P$	$[3] P$	$[5] P$	$[7] P$	\cdots
if	$=$	$=$			
$P \neq \pm Q$	$P+P$	$P+P+P$	$P+\cdots+P$	$P+\cdots+P$	\ldots

operation at curve level \longrightarrow sequence of $(\approx 10--20)$ operations at field level
field level op.: add/sub, multiplication: M, square: S, inversion: I

Faster Scalar Multiplication Algorithms

Representation of k impacts \#operations \rightarrow recode k :

- non-adjacent forms (NAF/wNAF):
high-radix signed-digits representations \rightarrow increase $\# 0$ s
- double-base number systems (DBNS): $x=\sum_{i=1}^{n^{\prime}} d_{i} b_{1}^{u_{i}} b_{2}^{v_{i}}$ with $d_{i}= \pm 1$ b_{1} and b_{2} co-prime integers (typically $\left.\left(b_{1}, b_{2}\right)=(2,3)\right)$
specific op.: point tripling [3] $P=P+P+P$ denoted TPL
decreasing exponents (Horner form) \rightarrow higher speed
- multi-base number systems (MBNS):
more than two bases (co-prime integers), e.g. $(2,3,5)$ and $(2,3,5,7)$

$$
x=\sum_{i=1}^{n^{\prime}}\left(d_{i} \prod_{j=1}^{l} b_{j}^{e_{j, i}}\right) \text { with } d_{i}= \pm 1
$$

BUT those recoding methods require pre-computations:

- w NAF: pre-compute and store $P_{j}=[j] P \quad \forall j \in\left\{3,5, \ldots, 2^{w-1}-1\right\}$
- DBNS/MBNS recoding is performed off-line

Remark: point subtraction (SUB) is as efficient as point addition
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Notations

- $k=\left(k_{n-1} k_{n-2} \ldots k_{1} k_{0}\right)_{2}, \quad k>1$, the n-bit scalar stored into t words of w bits with $w(t-1)<n \leq w t$ (i.e. last word may be 0 -padded). $k^{(i)}$ the i th word of k starting from least significant for $0 \leq i<t$
- \mathcal{B} the multi-base with I base elements (co-prime integers), $\mathcal{B}=\left(b_{1}, b_{2}, \ldots, b_{l}\right)$
- predicate divisible (x, \mathcal{B}) returns true if x is divisible by at least one base element in \mathcal{B} (false for other cases)
- number x represented as the sum of terms $x=\sum_{i=1}^{n^{\prime}}\left(d_{i} \prod_{j=1}^{l} b_{j}^{e_{j, i}}\right)$ with $d_{i} \in\{0, \pm 1\}$ and in Horner form
- term $\left(d_{i}, e_{1, i}, e_{2, i}, \ldots, e_{l, i}\right)$ defined by $d_{i} \times \prod_{j=1}^{l} b_{j}^{e_{j, i}}$ in \mathcal{B} (index i may be omitted when context is clear)
- Q, P curve points and $Q=[k] P$ scalar multiplication

Our Goals

MBNS recoding and ECC scalar multiplication:

- fully implemented in FPGA (ASIC version is underway)
- without pre-computations
- recoding is performed in parallel to curve-level operations
- fine tuning of architecture parameters
- presented for curves defined over \mathbb{F}_{p} (due to space limit)
also works for $\mathbb{F}_{2^{m}}$ with slightly different fine tuning

Very Simple MBNS Unsigned Recoding Algorithm Transforms k into a list of terms (LT) in Horner form

```
LT}\leftarrow
while k>1 do
    if not(divisible(k,\mathcal{B})) then (divisibility test)
        d}\leftarrow
        k\leftarrowk-1
    else
            d}\leftarrow
    for j from 1 to / do
        e}
        while }k\equiv0\operatorname{mod}\mp@subsup{b}{j}{}\mathrm{ do (divisibility test)
            ej}\leftarrow\mp@subsup{e}{j}{}+
            k\leftarrowk/bj
        LT}\leftarrow\operatorname{LT}\cup(d,\mp@subsup{e}{1}{},\mp@subsup{e}{2}{},\ldots,\mp@subsup{e}{l}{}
return LT
```


Remark: divisibility tests at line 3 and 10 are shared

Very Simple MBNS Scalar Multiplication Algorithm

- MBNS recoding works in a serial way starting with most significant
- each term can be immediately used in the scalar multiplication
\rightarrow recorded terms are processed and used on-the-fly
- multi-base adaptation of standard left-to-right scalar multiplication ([17, Sec. 3.3.1])

```
\(Q \leftarrow \mathcal{O}\)
foreach \(t\) in LT do \(\quad\left(t=\left(d, e_{1}, e_{2}, \ldots, e_{l}\right)\right)\)
    \(Q \leftarrow Q+d \times P\)
    for \(j\) from 1 to \(/\) do
        \(P \leftarrow\left[b_{j}^{e_{j}}\right] P\)
        \((d \in\{0,1\} \Rightarrow\) NOP/ADD)
    (DBL, TPL, QPL, ...)
\(Q \leftarrow Q+P\)
return \(Q\)
```

Remark 1: recoding and curve-level operations are overlapped
Remark 2: P is modified over time, we cannot use mADD (time penalty) Remark 3: $d=0$ is only possible for the very first term
\qquad

Implementation of Divisibility Tests (2/2)

To avoid complex decoding, we use $w=\operatorname{lcm}(2,4,3)=12$ and $w=24$

FPGA results for $n=160$ (XC5VLX50T, ISE 12.4, std efforts S/P\&R):

w	area slices (FF/LUT)	freq. MHz	clock cycles
12	$25(40 / 81)$	543	$t+3$
24	$67(53 / 152)$	549	$t+4$

Implementation of Divisibility Tests (1/2)
We use Pascal's tapes, [28] (published in 1819), [31], values are $2^{i} \bmod b_{j}$:

$b_{j} i$	11	10	9	8	7	6	5	4	3	2	1	0
3	2	1	2	1	2	1	2	1	2	1	$\mathbf{2}$	$\mathbf{1}$
5	3	4	2	1	3	4	2	1	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$
7	4	2	1	4	2	1	4	2	1	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

For $b_{j}=3$, the periodic sequence is $(21)^{*}$:

$$
\begin{aligned}
k \bmod 3 & =\left(\ldots+2^{3} k_{3}+2^{2} k_{2}+2^{1} k_{1}+k_{0}\right) \bmod 3 \\
& =\left(\ldots+2 k_{3}+k_{2}+2 k_{1}+k_{0}\right) \bmod 3 \\
& =(\underbrace{\sum\left(2 k_{2 i+1}+k_{2 i}\right)}_{\alpha}) \bmod 3 .
\end{aligned}
$$

For $b_{j}=5$, the periodic sequence is (3421)*

- use $3=1+2 \rightarrow$ unsigned sum with additional inputs (FPGA)
- use $3 \equiv-2 \bmod 5 \longrightarrow$ signed sum with less operands
T. Chabrier \& A. Tisserand, IRISA. On-the-FIy MBNS Recoding for ECCSM without Pre-Computations

Exact division k / b_{j} : we know that k is divisible by b_{j}
Algorithm from [19] (LSWF), optimized for FPGA and $b_{j} \in\{3,5,7\}$:

$$
\begin{aligned}
& c \leftarrow 0 \\
& \text { for } i \text { from } 0 \text { to } t-1 \text { do } \\
& \quad r \leftarrow k^{(i)}-c \\
& \quad r \leftarrow r \times\left(b_{j}^{-1} \bmod 2^{w}\right) \\
& c \leftarrow 0 \\
& \quad \text { for } h \text { from } 1 \text { to } b_{j}-1 \text { do } \\
& \quad \text { if } r \geq h \times\left\lceil\left(2^{w}-1\right) / b_{j}\right\rceil \text { then } \\
& \quad c \leftarrow c+1 \\
& k^{(i)} \leftarrow\left(r_{w-1} \cdots r_{0}\right)
\end{aligned}
$$

return k

b_{j}	$b_{j}^{-1} \bmod 2^{12}, \gamma$	$b_{j}^{-1} \bmod 2^{24}, \gamma$
3	$(101010101011)_{2}, 3$	$(101010101010101010101011)_{2}, 4$
5	$(110011001101)_{2}, 3$	$(110011001100110011001101)_{2}, 4$
7	$(110110110111)_{2}, 3$	$(110110110110110110110111)_{2}, 4$

We use our multiplication by constant algorithm [4]
T. Chabrier \& A. Tisserand, IRISA. On-the-FIy MBNS Recoding for ECCSM without Pre-Computations

Implementation of Exact Division by b_{j} Elements (2/2)

FPGA results for $n=160$ (XC5VLX50T, ISE 12.4, std efforts S/P\&R):

w	area slices (FF/LUT)	freq. MHz	clock cycles
12	$59(138 / 171)$	291	$t+4$
24	$152(441 / 448)$	202	$t+5$

T. Chabrier \& A. Tisserand, IRISA. On-the-FIy MBNS Recoding for ECCSM without Pre-Computations

Example

Notations:

- "CLO" denotes curve-level operations
- DT denotes divisibility test, "res." their results
- "/ b_{j} " exact division by b_{j}

Remark: very short latency at the very beginning ($<0.01 \%$ of $[k] P$ for $n=160$ and even less for larger fields)
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Unsigned Multiple-Base Recoding Unit

FPGA results for $n=160$ and $\mathcal{B}=(2,3,5,7)$ (XC5VLX50T, ISE 12.4, std efforts $S / P \& R$):

w	area slices (FF/LUT)	freq. MHz
12	$153(301 / 412)$	232
24	$323(682 / 908)$	202

Remark: DTD-2 divisibility test and division by $2^{1 \ldots v}$ with $v \leq w$
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Signed Digits Version: $d \in\{0, \pm 1\}$
Add a selection function S in the recoding algorithm:

	unsigned version
$4:$	$d \leftarrow 1$
$5:$	$k \leftarrow k-1$

	signed version
$4:$	$d \leftarrow \mathrm{~S}(k)$
5:	$k \leftarrow k-d$

We compared 4 heuristic selection functions:

- min

- approx: approximated minimum value selection function
- max_nb_div: maximum number of divisors selection function
- min2: 2 steps minimum value selection function

1) $(k-1, k+1) \xrightarrow{\text { min }}\left(k^{\prime}, k^{\prime \prime}\right)$
2) $\left(k^{\prime}-1, k^{\prime}+1, k^{\prime \prime}-1, k^{\prime \prime}+1\right) \xrightarrow{\min 2}\left(\zeta^{\prime}, \zeta^{\prime \prime}, \zeta^{\prime \prime \prime}, \zeta^{\prime \prime \prime \prime}\right)$
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations
approx Selection Function

Computing ($k^{\prime}, k^{\prime \prime}$) is expensive, so we try to get an approximation

$$
\begin{aligned}
& k^{\prime} \approx \delta^{\prime}=\underbrace{\left\lfloor\log _{2}(k-1)\right\rfloor+1}_{\text {MSB position of } k-1}-\sum_{j=1}^{\prime} e_{j}^{\prime} \log _{2}\left(b_{j}\right) \\
& k^{\prime \prime} \approx \delta^{\prime \prime}=\underbrace{\left\lfloor\log _{2}(k+1)\right\rfloor+1}_{\text {MSB position of } k+1}-\sum_{j=1}^{\prime} e_{j}^{\prime \prime} \log _{2}\left(b_{j}\right)
\end{aligned}
$$

1) Exponents e_{j}^{\prime} and $e_{j}^{\prime \prime}$ are produced by the divisibility tests
2) Approximate constants: $\log _{2} 3 \approx 1.59, \log _{2} 5 \approx 2.32$, and $\log _{2} 7 \approx 2.81$

$$
\delta^{\prime}=\operatorname{MSB}(\mathrm{k}-1)-e_{b_{1}=2}-1.5 e_{b_{2}=3}-2.25 e_{b_{3}=5}-2.75 e_{b_{4}=7}
$$

T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Complete FPGA Implementation Results

Signed recoding unit with approx heuristic:

	area slices (FF/LUT)	freq. MHz
12	$173(326 / 466)$	232
24	$345(724 / 1005)$	202

ECC processor (modification from [6], collab. UCC crypto group):

version	memory type	area slices (FF/LUT)	BRAM	freq. MHz
small	distributed	2204 (3971/6816)	0	155
	BRAM	1793 (3641/6 182)	6	155
large	distributed	3182 (4668/7 361)	0	142
	BRAM	2427 (4297/6981)	6	142

- small: \mathbb{F}_{p} curves, $n=160$, Jacob. coord., NAF/MBNS, 1 unit/op.
- large: same with $4 N A F / M B N S$ and $2 \pm, 2 \times, 1 \mathrm{inv}$.

Comparison of Selection Functions

For curves over \mathbb{F}_{p} with $a=-3$:

Average computation time (in M) of 10000 scalar multiplications with 160 -bit values

Similar behavior for curves with $a \neq-3$
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

[k]P Timings Comparison

For $n=160$ and $a \neq-3$:

			pre-co	putations	
refs.	methods	perfs	storage	operations	recoding
	dbI\&add	1985.3M	\emptyset	\emptyset	\emptyset
	NAF	1723.0 M	\emptyset	\emptyset	on-the-fly \& very cheap
	3NAF	1583.7 M	1 pt	49.4M	on-the-fly \& very cheap
	4NAF	1499.1 M	3 pts	140.8M	on-the-fly \& very cheap
[10]	DBNS	1863.0M	\emptyset	\emptyset	off-line \& costly
[11]	DBNS	1722.3 M	\emptyset	\emptyset	off-line \& costly
[3]	DBNS	1558.4 M	7 pts	>150M	off-line \& costly
[15]	DBNS	1615.3M	\emptyset	\emptyset	off-line \& costly
our	$(2,3)$ MBNS	1746.2M	\emptyset	\emptyset	on-the-fly \& small
	$(2,3,5)$ MBNS	1679.9 M	\emptyset	\emptyset	on-the-fly \& small
	$(2,3,5,7)$ MBNS	1670.4 M	\emptyset	\emptyset	on-the-fly \& small

For $n=160$ and $a=-3$: about 15% slower than best DBNS/MBNS (theoretical) solutions

Conclusion \& Future Prospects

- first full hardware implementation of MBNS recoding and ECC scalar multiplication
- even a simple MBNS recoding is:
- not so slow $\approx+15 \%$ compared the fastest solutions
- not so big $\approx+10 \%$ on Virtex 5 FPGAs

Future works:

- ASIC version (underway)
- advanced recodings for higher speed and better protection against SCAs

Acknowledgments:

- Prof. Christiane Frougny for historical references
- Anonymous reviewers for their valuable comments
- Région Bretagne / Conseil Général des Côtes d'Armor (ROBUSTA prj): PhD grant
- PAVOIS project (ANR 12 BS02 002 01): partial funding

References by Topics

- ECC: [17] and [7]
- DBNS: [9], [12], [13], [10], [15], [2], [3], [14] and [11]
- MBNS: [26], [21], [23], [29], [32], [1] and [30]
- Side-channel attacks and counter-measures: [25], [27] [20], [8], [5]
- Pascal's tape: [28], [31]
- Exact division: [19]
- Multiplication by constant: [4]
-

The end, some questions ?

Contact:

- mailto:arnaud.tisserand@irisa.fr
- http://people.irisa.fr/Arnaud.Tisserand/
- CAIRN Group http://www.irisa.fr/cairn/
- IRISA Laboratory, CNRS-INRIA-Univ. Rennes 1 6 rue Kerampont, CS 80518, F-22305 Lannion cedex, France

Thank you

ANR PAVOIS
http://pavois.irisa.fr/

- ANR Project ANR 2012-2016
- IRISA (Lannion) + LIRMM (Perpignan \& Montpellier)
- Arithmetic Protections Against Physical Attacks for Elliptic Curve based Cryptography

References

[1] J. Adikari, V. S. Dimitrov, and L. Imbert.
Hybrid binas-ternary number system for elliptic curve cryptosystem
[2] R. Barua, S. K. Pandey, and R. Pankaj.
In Prec. 8th International Conference on Progress in Cryptology (INDOCRYPT), volume 4859 of LNCS, pages 351-360,
Springer, December 2007. Springer, December 2007.
[3] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters.
Optimizing double-base elliptic-curve single-scalar multiplication
In Proc. 8 th international Conference on Progress in Cryptology (INDOCRYPT), volume 4859 of LNCS, pages 167-182.
Springer, December 2007.
[4] N. Boullis and A. Tisserand.
S. Boulis and A. Tisserand.
SEme optimization of hardware multiplication by constant matrices.
IERE Transactions on Computers, $54(10): 1271-1282$, October 2005.
[5] A. Byrne, N. Meloni, A. Tisserand, E. M. Popovici, and W. P. Marnane
Comparison of simple power analysis
Journal of Computers, 2(10):52-62, 2007
[6] A. Byrne, E. Popovici, and W.P. Marnane
Versatile empocessor for of(p^{m}) arithmetic for use in cryptographic applications.
IET Computers \& Dig gital Techniques, $2(4): 253-264$
H. Cohen and G. Frey, editors.
H. Cohen and G. Frey, editors.
Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Chapman on

Chapman \& Hall/CRC, 2005.
[8] J.-S. Coron.

```
    M,
```

[9] V. Dimitrov and T. Cooklev.

[10] V. Dimitrov, L. Imbert, and P. K. Mishra.
Efficient and secure elliptic curve point multiplication using double-base chains.
In Proc. 11th International Conference on the Theory and Application of Cryptology and Information Security In Proc. 11th International Conference on the Theory and Application of Cryptol
(ASIACRYPT), volume 3788 of LNCS, pages $59-78$. Springer, December 2005 .
[11] V. Dimitrov, L. Imbert, and P. K. Mishra
[ii] V. Dimitrov-L. Imbert, and P. K. Mishra. The double-base number system and its application to elliptic cor
Mathematics of Computation, $77(262)$: $1075-1104$, April 2008.
[12] V.S. Dimitrov, G.A. Jullien, and W.C. Miller. An algorithm for modular exponentiation.
Information Processing Letters, $66($ (3):155-159, May 1998.
[13] V.S. Dimitrov, G.A. Jullien, and W.C. Miller. Theory and applications of the double-base number system.
IEEE Trans. on Computers, 48(10):1098-1106, October 1999.
[14] C. Doche and L. Habsieger
C. Doche and L. Habsieger.
A tree-based approach for computing double-base chains

In Proc. 13th Australasian Conference on Information Security and Privacy, volume 5107 of LNCS, pages 433-446, Jul
2008 , 2008.
[15] C. Doche and L. Imbert
ded double-base number system with applications to elliptic curve cryptography In Proc. 7 th International
December 2006. Springer.
[16] P. Giorgi, L. Imbert, and T. Izard.
Optimizing elliptic curve scalar multiplication for small scalars
In Proc. Mathematics for Signal and Information Processin
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

References IV

[25] S. Mangard, E. Oswald, and T. Popp.
Power Analysis Attacks: Revealing the Secrets of Smart Cards.
Spint Springer, 2007.
[26] P. K. Mishra and V. Dimitrov.
Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation.
27] E. Oswald. Fllptic Curve Cryptography, volume 317 of London Mathematical Society Lecture Note Series, chapter Side Channel Analysis, pages 69-86.

Analysis, pages 69-86.
[28] $\begin{gathered}\text { B. Pascal. } \\ \text { Euvres con }\end{gathered}$
©uures complètes, volume 5, chapter De Numeribus Multiplicibus, pages 117-128
Librarie Lefevere, 1819.
[29] G. N. Purohit and A. S. Rawat.

[30] G.N. Purohit, A. S. Rawat, and M. Kumar Elliptic curve point multiplication using MBNR and point halving Internationa
[31] J. Sakarovitch. J. Sakarovitch.
Elements of Automata Theory, chapter Prologue: M. Pascal's Division Machine, pages 1-6.
[32] X. Yin, T. Yang, and J. Ning.
X. Yin, T. Yang, and J. Ning.
Optimized approach for computing multi-base chains. Optimized approach for computing multi-base chains.
In Proc. 7 th International Conference on Computational Intelligence and Security (CIS), pages 964-968. IEEE, December 2011
[17] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer, 2004.
[18] K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara. Fast implementation of public-key cryptography on a DSP TMS320C6201 In Proc. Cryptographic Hardware and Embedded Systems (CHES), volume]
[19] T. Jebelean.
An algorithm for exact division Journal of Symbolic Computation, 15(2):169-180, February 1993.
[20] M. Joye.
Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture Note chapter Defenses Against Side-Channel Analysis, pages $87-100$
[21] P. Longa. Accelerating the scalar multiplication on elliptic curve cryptosystems over prime fields. Master's thesis, Univ. Ottawa, 200
[22] P. Longa and C. Gebotys.
Setting speed records with the (fractional) multibase non-adjacent form method for efficient elliptic curve scalar multiplication.
Tednical Report 118, Cryptoogy ePrint Archive, 2008.
[23] P. Longa and C. Gebotys.
Fast multibase methods and other several optimizations for elliptic curve scalar multiplication
4] P. Longa and A. Miri
New multibase non-adjacent form scalar multiplication and its application to elliptic curve cryptosystems.

Costs of Curve Level Operations

Best computation costs from literature and curves over \mathbb{F}_{p}

$\begin{gathered} a \\ -3 \end{gathered}$	refs.	curve-level operations					
		ADD	mADD	DBL	TPL	QPL	SPL
\neq	EFD	$11 \mathrm{~m}+5 \mathrm{~S}$	7M + 4S	$1 \mathrm{M}+8 \mathrm{~S}$	$5 \mathrm{M}+10 \mathrm{~S}$	n. a.	n. a.
	[16]	n . a.	n . a.	$1 \mathrm{M}+8 \mathrm{~S}$	$5 M+10 S$	$7 \mathrm{M}+16 \mathrm{~S}$	$15 \mathrm{M}+24 \mathrm{~S}$
	[22]	11M +5 S	7M + 4S	$2 \mathrm{M}+8 \mathrm{~S}$	$6 \mathrm{M}+11 \mathrm{~S}$	$9 \mathrm{M}+15 \mathrm{~S}$	$13 \mathrm{M}+18 \mathrm{~S}$
$=$	EFD	$11 M+5 S$	7M + 4S	$3 M+5 S$	7M+7S	n. a.	n. a.
	[24]	$11 m+5 S$	$7 \mathrm{M}+4 \mathrm{~S}$	$3 M+5 S$	$7 \mathrm{M}+7 \mathrm{~S}$	$11 \mathrm{M}+11 \mathrm{~S}$	18M + 11S
	[23][22]	$11 \mathrm{M}+5 \mathrm{~S}$	$7 \mathrm{M}+4 \mathrm{~S}$	$3 \mathrm{M}+5 \mathrm{~S}$	$7 \mathrm{M}+8 \mathrm{~S}$	$10 \mathrm{M}+12 \mathrm{~S}$	$14 \mathrm{M}+15 \mathrm{~S}$
	refs.	λ DBL			λ TPL		
\neq	[10][11][18]	$4 \lambda \mathrm{M}+(4 \lambda+2) \mathrm{S}$			$(11 \lambda-1) \mathrm{M}+(4 \lambda+2) \mathrm{S}$		
	refs.	λ TPL / λ^{\prime} DBL					
\neq	[10][11]	$\left(11 \lambda+4 \lambda^{\prime}-1\right) \mathrm{M}+\left(4 \lambda+4 \lambda^{\prime}+3\right) \mathrm{S}$					

EFD: Explicit-Formulas Database http://hyperelliptic.org/EFD
mADD : $\mathcal{A}+\mathcal{J} \longrightarrow \mathcal{J}$
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

Randomized Selection Function

When k is not divisible by \mathcal{B} elements, S returns $d=1$ or $d=-1$ randomly as a simple protection against some side-channel attacks

Average computation times for $a \neq-3$ and 10000 random scalars:

	rnd		min		diff.
\mathcal{B}	M	\#ADD	M	\#ADD	$[\%]$
$(2,3)$	1960.5	49.3	1738.5	34.0	12.8
$(2,3,5)$	1843.0	39.8	1673.7	28.0	10.1
$(2,3,5,7)$	1811.4	34.8	1670.0	24.8	8.5
$(2,3,5,7,11)$	1816.7	32.1	1693.5	22.9	7.3

DBNS and MBNS are very redundant and sparse representations
Security efficiency has to be evaluated

Statistical Timings of Unsigned MBNS Scalar

 MultiplicationGoal: selection of \mathcal{B} elements

- complete $[k] P$ timings (in M) for 10000 random 160-bit values
- most efficient multi-base is $\mathcal{B}=(2,3,5,7)$
- adding $b_{j}=11$ does not improve the performance while it makes the architecture larger and slower
- $b_{1}=2$ for all configurations (k is received in binary)
T. Chabrier \& A. Tisserand, IRISA. On-the-Fly MBNS Recoding for ECCSM without Pre-Computations

