Relation collection for the
Function Field Sieve

Jérémie Detrey, Pierrick Gaudry and Marion Videau

INRIA / CNRS / Université de Lorraine

ARITH 21 — April 10, 2013

1/28

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

2/28

Plan

Context

3/28

Hard problems in cryptography

Public key cryptography security relies on (supposedly):
Computationally hard problems

Currently in use:

© Integer factorization (RSA)
© Discrete logarithm in finite fields (DSA, ElGamal)
© Discrete logarithm in elliptic curves (ECDSA)

Also widely studied:

@ Discrete log in hyperelliptic curves
© Systems based on error correcting codes
© Lattice-based systems

© Systems based on polynomial systems

4/28

Hard problems in cryptography

Public key cryptography security relies on (supposedly):
Computationally hard problems

Currently in use:

© Integer factorization (RSA)
e Discrete logarithm in finite fields (DSA, EIGamal)
© Discrete logarithm in elliptic curves (ECDSA)

Also widely studied:

@ Discrete log in hyperelliptic curves
© Systems based on error correcting codes
© Lattice-based systems

© Systems based on polynomial systems

4/28

Basic index calculus (after Adleman)

Let Fn be a finite field, with small p (think p =2 or 3).
Choose ¢(t) € Fp[t] irreducible of degree n, such that

Fpn = Fp[t]/(t).

Let g(t) be a generator of F», and h any element.
| Discrete log problem (DLP): find x such that h = g*.

Collect relations:

© For random z, compute g(t)* mod ¢(t);

@ Check if it is B-smooth, i.e. it is a product of irreducible
factors m; of degree at most B.

e If yes, g(t)? = [[mi(t)®, and taking the log yield a linear

relation:
z= Z ej log m;(t)

5/28

Basic index calculus (cont’d)

Linear algebra:
© Put each relation in the row of a matrix, where columns are
labelled by the 7;'s.
© Get the values of log 7 by linear algebra.
© Having enough relations guarantees that there is a unique
solution.

Individual logarithm:

© For random z, compute h(t)g(t)* mod ¢(t);
® Check if it is B-smooth;
® If so, logh = —z + (logs of known elements).

Analysis: Highly depends on the probability for a polynomial to be
B-smooth. Get a subexponential complexity ~ exp(y/n).

6/28

Current situation

The best methods known are variants of the basic index calculus.

They depends on the type of field:
© Prime field F,: Number Field Sieve. Time =~ exp(+/log p).

© Field of small characteristic F,n: Function Field Sieve. Time
~ exp(v/n).

© Medium prime case: also ~ exp(+/nlog p).

@ Fields of tiny characteristic: Joux's algorithm (2013). Time

~ exp(/7).

7/28

Current situation

The best methods known are variants of the basic index calculus.

They depends on the type of field:

© Prime field F,: Number Field Sieve. Time ~ exp(+/log p).

© Field of small characteristic F,n: Function Field Sieve. Time
~ exp(v/n).

© Medium prime case: also ~ exp(+/nlog p).

© Fields of tiny characteristic: Joux’s algorithm (2013). Time

~ exp(/7).

7/28

Current situation

The best methods known are variants of the basic index calculus.

They depends on the type of field:

© Prime field F,: Number Field Sieve. Time ~ exp(+/log p).
© Field of small characteristic F,n: Function Field Sieve. Time
~ exp(v/n).
© Medium prime case: also ~ exp(+/nlog p).
© Fields of tiny characteristic: Joux’s algorithm (2013). Time
~ exp({/7).
Rem. Our paper and our software directly apply to the first phase of the

descent in Joux’s algorithm when applied to prime degree extensions of
IFs.

7/28

Plan

Setting of the problem

8/28

Relation collection

Given:
© Base ring = F,[t], where p =2 or 3;
© Two bivariate polynomials f(x) and g(x):
f(x) = x°+B(t)x°+ -+ A(t)x + f(t)
g(x) = x+af(t),
where deg f;(t) = O(1) and deg go(t) = large.
© A smoothness bound B.

Looking for:

© A relation is a pair (a(t), b(t)) of polynomials such that both
f(a/b)b%&x T and a(t) — go(t)b(t) are B-smooth.
© Need millions of them (well... billions).

Rem: Explaining the way the matrix is built requires a bit more theory,
but the general idea is close to Adleman’s basic algo.

9/28

Relation collection — example

For solving DLP in Fyi0s9, one can take
f=xS+ (P +t+ 1)+ (P +Ox+ (Pt + 8+ 2+ B2+t
g= X+ (t174+t20+t19+t18+t17+t15+t14+t13+t12+t11+t8+t7+t5+t+1)

(This is because Res,(f, g) has an irreducible factor of degree 1039.)
Let

a(t):t23+t22—|—t20—|—t19+t16+t15+t14+tl3+t12+t11+t7+t2+t,
b(t)=t?+ 2 B+t Mt O P P el

Then both a® + fza®b + fiab® + fyb® and a + gob have irreducible
factors (in t) of degree at most 33.
We write this relation in hexa:

d9£886,65471b
:2,7,d,d,d,b,9d,54f41,77a48b,e88e91,1b£f57123,ee2d01bb
:7,6d,f1,a79,925,52c5,3a90a07,400004d,52811b33,db40a61b,25380517b

10/28

Relation collection — example (cont’d)

For this example, one need at least one billion of such a,b.

The degrees on both sides are 144 and 196.

The probability that both are 33-smooth is very low (one in
several million).

Can not be satisfied with a trial and error search.

Sieving is the solution.

11/28

Plan

Eratosthenes

12/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

[o]1]2]3]4]5]6]7]8]9]10[11]12]13]14]15[16[17[18]19]20]21[22]23]24]

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

Lolx12]3]4]5]6]7]8]9]10[11]12]13]14]15[16[17][18]19]20[21[22]23]24]

Mark multiples of 2.

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

Lol 2] 3] 4156771879 [wol11]x2]13]14]15]16]17]18]19]20]21[22]23] 4]

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

Lol 2l3) 415 |67 7187 9 [1o]11]x2]13]14]15]16]17]18]19]20]21[22]23] 4]

Mark multiples of 3.

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

Lelr|2l61 4] 5 | 6] 7 | 8] e xd11]x213w]rs]a6]17]18]10]20[p1]2]23] 4]

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

Lelr|2lel A 5 Le] 7 | 81 e x| 11]x213w]rs]6[17]18]10]20[p1]27]23] 4]

Mark multiples of 5.

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

474023 I G 4) e 2 S) P AR

Remaining positions are prime.

13/28

Eratosthenes’ sieve

Memory requirement. Array of N bits with random access.
Time complexity.

The integer P in the loop takes all prime values up to v/N.
For each P, we visit | N/P| positions.

So the total number of operations is >~ p_ /5 oime N/ P, which is

essentially
1

N B

P<vVN prime

By Mertens’ theorem, this gives a cost of O(N loglog).

14/28

Sieving for factoring integers

Instead of putting a zero in the array, one can keep further
information.

Depending on the information stored, one can get more or less data
on the factorization of the integers, at a cost of higher memory.

Variants of Eratosthenes:

© Add one at each sieving step: get number of distinct prime
factors.

© With only 2 bits per position, one can get the numbers that
contain exactly two distinct primes.

15/28

Sieving for factoring integers

Variants of Eratosthenes (cont'd):

@ Initialize position n with integer n. When sieving, divide the
value by P as long as we can. Keep the divided values. This
gives the full factorization of all numbers up to N.

@ Initialize position n with approximation of log n. When sieving,
subtract log P. In the end, positions with a small remaining
value are likely to be smooth (not exact, due to powers).

Rem. Applies to various sets of inputs:
© Need the property T[i + P] = T[i] mod P, for all P that we
want to sieve.
© True if T[i] is any rational fraction in i.
e For a given P, the initial position to mark might be difficult to

compute.

16/28

2D sieving

In our case, the input is bi-dimensional (indexed by (a, b) pairs).

Various complications:
© Small primes have several hits per row: can sieve row by row
(similar to 1D sieving).

© Primes larger than row length hit only a fraction of the rows.
Theory of lattices to the rescue.
Need to find an appropriate basis, not really reduced in the
classical sense.

© Computation of the initial position can be a bit more difficult.

17/28

Sieving polynomials

Things to change when working over [F,[t] instead of Z:

© Prime numbers replaced by (monic) irreducible polynomials.

© Need conversion Fp[t] «— Z, because positions are indexed
by polynomials. Usually use Lex-order.

© The set of multiples of a prime p(t) is an F,-vector space.

Need to enumerate quickly elements of a vector space:
Gray codes

18/28

Plan

Fifty shades of Gray codes

19/28

Basic Gray code

Binary Gray code of length 3 over F:

0 0
1 0
1 1
0 1
0 1
1 1
1 0
0 0

Enumerating an [Fa-vector space of dim k with basis {ey, ...

0

=== -0 OO

Only one bit-flip between two lines.

7ek}:

Add successively vectors corresponding to sequence of bit-flips.

20/28

Gray sequence for p-ary Gray codes

® 2-ary sequence:
(0,1,0,2,0,1,0,3,...) = 2-adic valuations of 1,2,3,4,5,...

@ 3-ary sequence:
(0,0,1,0,0,1,0,0,2,0,...) = 3-adic val. of 1,2,3,4,5, ...
= t-adic valuations of polys in F3[t] in Lex order.

© p-ary sequence: t-adic val. of polys in Lex order.
Can be defined recursively by

AO:()7 Ai+1:(Ai,i,Ai,...,iA;),

with A; repeated p times.

21/28

Monic Gray codes

Why? Expressions to test for smoothness are homogeneous.
Hence, can force b(t) to be monic. Reduces the search space.

How? Take a basis {e, ..., e} that is monic and echelonized:

dege; < degejy1.

To ensure that the most-significant coeff is one, the recursive
definition becomes:

A6:()7 ;’+1:(A§)i7Ai)'

E.g. The 3-ary monic Gray sequence is
(0,1,0,0,2,0,0,1,0,0,1,0,0,3,...).

22/28

Enumerating in Lex order (non-monic)

Take an “all-one-triangular” basis:

12 o pd gt pd+k
e 1
0
*
ek 1 ——1
Fact. p-ary Gray code enumerates Span(ey, ..., ex) in Lex order.

“Proof”: The part . t/ of e; emulates the carry propagation.

(Rem. Yes, we can do it for monic as well.)

23/28

Plan

Benchmarks, conclusion

24/28

Benchmark for 51039

Parameters:

Max. deg. of sieved primes (factor base bound) | 25
Max. deg. of large primes (smoothness bound) | 33
Threshold degree for starting cofactorization 99

Sieving time, per position:

Step Cycles/pos Percentage
Initialize norms 1.10 2.04 %
Sieve by rows 9.73 18.15 %
Fill buckets 31.73 59.21 %
Apply buckets 2.74 512 %
Cofactorization 7.43 13.87 %
Total 53.59 100.00 %

In that case, proba of being smooth =~ 2e-8. Hence about 1 s/rel.

25/28

Benchmark for 51039

The computation is not finished.

Currently, the matrix is a bit too big, so we do a lot of oversieving.

Still no clear idea of the total running time for discrete log in this
field.

26/28

New record: [Fyso0

Joint work with: R. Barbulescu, C. Bouvier, H. Jeljeli, E. Thomé,
P. Zimmermann. http://eprint.iacr.org/2013/197

Note: 809 is prime. Previsous was 613 (Joux-Lercier, 2005). All
recent records (in particular based on the L(1/4) algorithm by

Joux) are for composite degree extensions, which are much easier.

Running time:
@ Relations: 32M rels collected in 18,000 hours on one core of
Intel Core i5-2500.

© Filtering: reduce to a matrix of size 4.46M, with 100 coeffs
per row. Negligible time (quality of output is important).

© Linear algebra: 1,300 hours on an Nvidia GTX 680 GPU.

© Individual logs: around 1 hour.

27/28

http://eprint.iacr.org/2013/197

Conclusion

© Sieving is very efficient. Many funny complications when
switching from integers to polynomials.

© Crossover point between FFS and Joux's new algorithm still
to be determined for prime degree extensions.

© Our relation collection implementation can be used for both.

@ It is available under LGPL: feel free to play with it!
http://cado-nfs.gforge.inria.fr/
(In the £fs/ subdirectory of the git repo.)

28/28

http://cado-nfs.gforge.inria.fr/

	Context
	Setting of the problem
	Eratosthenes
	Fifty shades of Gray codes
	Benchmarks, conclusion

