Relation collection for the Function Field Sieve

Jérémie Detrey, Pierrick Gaudry and Marion Videau

INRIA / CNRS / Université de Lorraine

ARITH 21 - April 10, 2013

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

Hard problems in cryptography

Public key cryptography security relies on (supposedly): Computationally hard problems

Currently in use:

- Integer factorization (RSA)
- Discrete logarithm in finite fields (DSA, ElGamal)
- Discrete logarithm in elliptic curves (ECDSA)

Also widely studied:

- Discrete log in hyperelliptic curves
- Systems based on error correcting codes
- Lattice-based systems
- Systems based on polynomial systems

Hard problems in cryptography

Public key cryptography security relies on (supposedly): Computationally hard problems

Currently in use:

- Integer factorization (RSA)
- Discrete logarithm in finite fields (DSA, ElGamal)
- Discrete logarithm in elliptic curves (ECDSA)

Also widely studied:

- Discrete log in hyperelliptic curves
- Systems based on error correcting codes
- Lattice-based systems
- Systems based on polynomial systems

Let \mathbb{F}_{p^n} be a finite field, with small p (think p = 2 or 3). Choose $\varphi(t) \in \mathbb{F}_p[t]$ irreducible of degree n, such that

$$\mathbb{F}_{p^n} = \mathbb{F}_p[t]/\varphi(t).$$

Let g(t) be a generator of $\mathbb{F}_{p^n}^*$, and h any element.

Discrete log problem (DLP): find x such that $h = g^x$.

Collect relations:

- For random z, compute $g(t)^z \mod \varphi(t)$;
- Check if it is *B*-smooth, i.e. it is a product of irreducible factors π_i of degree at most *B*.
- If yes, $g(t)^z = \prod \pi_i(t)^{e_i}$, and taking the log yield a **linear** relation:

$$z = \sum e_i \log \pi_i(t)$$

Basic index calculus (cont'd)

Linear algebra:

- Put each relation in the row of a matrix, where columns are labelled by the π_i's.
- Get the values of $\log \pi_i$ by linear algebra.
- Having enough relations guarantees that there is a unique solution.

Individual logarithm:

- For random z, compute $h(t)g(t)^z \mod \varphi(t)$;
- Check if it is B-smooth;
- If so, $\log h = -z + (\log s \text{ of known elements})$.

Analysis: Highly depends on the probability for a polynomial to be *B*-smooth. Get a **subexponential** complexity $\approx \exp(\sqrt{n})$.

The best methods known are variants of the basic index calculus. They depends on the **type of field**:

- Prime field \mathbb{F}_p : Number Field Sieve. Time $\approx \exp(\sqrt[3]{\log p})$.
- Field of small characteristic \mathbb{F}_{p^n} : Function Field Sieve. Time $\approx \exp(\sqrt[3]{n})$.
- Medium prime case: also $\approx \exp(\sqrt[3]{n \log p})$.
- Fields of tiny characteristic: Joux's algorithm (2013). Time $\approx \exp(\sqrt[4]{n})$.

The best methods known are variants of the basic index calculus. They depends on the **type of field**:

- Prime field \mathbb{F}_p : Number Field Sieve. Time $\approx \exp(\sqrt[3]{\log p})$.
- Field of small characteristic \mathbb{F}_{p^n} : Function Field Sieve. Time $\approx \exp(\sqrt[3]{n})$.
- Medium prime case: also $\approx \exp(\sqrt[3]{n \log p})$.
- Fields of tiny characteristic: Joux's algorithm (2013). Time $\approx \exp(\sqrt[4]{n})$.

The best methods known are variants of the basic index calculus. They depends on the **type of field**:

- Prime field \mathbb{F}_p : Number Field Sieve. Time $\approx \exp(\sqrt[3]{\log p})$.
- Field of small characteristic \mathbb{F}_{p^n} : Function Field Sieve. Time $\approx \exp(\sqrt[3]{n})$.
- Medium prime case: also $\approx \exp(\sqrt[3]{n \log p})$.
- Fields of tiny characteristic: Joux's algorithm (2013). Time $\approx \exp(\sqrt[4]{n})$.

Rem. Our paper and our software directly apply to the first phase of the descent in Joux's algorithm when applied to prime degree extensions of \mathbb{F}_2 .

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

Relation collection

Given:

- Base ring = $\mathbb{F}_p[t]$, where p = 2 or 3;
- Two bivariate polynomials f(x) and g(x):

$$\begin{array}{rcl} f(x) & = & x^6 + f_5(t)x^5 + \dots + f_1(t)x + f_0(t) \\ g(x) & = & x + g_0(t), \end{array}$$

where deg $f_i(t) = O(1)$ and deg $g_0(t) =$ large.

• A smoothness bound *B*.

Looking for:

- A relation is a pair (a(t), b(t)) of polynomials such that both $f(a/b)b^{\deg_x f}$ and $a(t) g_0(t)b(t)$ are *B*-smooth.
- Need millions of them (well... billions).

Rem: Explaining the way the matrix is built requires a bit more theory, but the general idea is close to Adleman's basic algo.

For solving DLP in $\mathbb{F}_{2^{1039}},$ one can take

$$f = x^{6} + (t^{2} + t + 1)x^{5} + (t^{2} + t)x + (t^{12} + t^{10} + t^{8} + t^{5} + t^{3} + t)$$

 $g = x + (t^{174} + t^{20} + t^{19} + t^{18} + t^{17} + t^{15} + t^{14} + t^{13} + t^{12} + t^{11} + t^8 + t^7 + t^5 + t + 1)$ (This is because $\operatorname{Res}_x(f, g)$ has an irreducible factor of degree 1039.)
Let

$$a(t) = t^{23} + t^{22} + t^{20} + t^{19} + t^{16} + t^{15} + t^{14} + t^{13} + t^{12} + t^{11} + t^7 + t^2 + t,$$

 $b(t) = t^{22} + t^{21} + t^{18} + t^{16} + t^{14} + t^{10} + t^9 + t^8 + t^4 + t^3 + t + 1$

Then both $a^6 + f_5 a^5 b + f_1 a b^5 + f_0 b^6$ and $a + g_0 b$ have irreducible factors (in t) of degree at most 33.

We write this relation in hexa:

d9f886,65471b

```
:2,7,d,d,d,b,9d,54f41,77a48b,e88e91,1bf57123,ee2d01bb
:7,6d,f1,a79,925,52c5,3a90a07,400004d,52811b33,db40a61b,25380517b
```

For this example, one need at least one billion of such a,b.

The degrees on both sides are 144 and 196.

The probability that both are 33-smooth is **very low** (one in several million).

Can not be satisfied with a trial and error search.

Sieving is the solution.

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mark multiples of 2.

8 X 2 3 A 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8 x 2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mark multiples of 3.

8 x 2 3 4 5 8 7 8 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

8 x 2 3 4 5 8 7 8 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mark multiples of 5.

812345878910123415161718192122324

Remaining positions are prime.

Memory requirement. Array of N bits with random access.

Time complexity.

The integer P in the loop takes all prime values up to \sqrt{N} .

For each *P*, we visit $\lfloor N/P \rfloor$ positions.

So the total number of operations is $\sum_{P < \sqrt{N} \text{ prime}} \lfloor N/P \rfloor$, which is essentially

$$N\sum_{P<\sqrt{N} ext{ prime}}rac{1}{P}.$$

By Mertens' theorem, this gives a cost of $O(N \log \log N)$.

Instead of putting a zero in the array, one can keep **further information**.

Depending on the information stored, one can get more or less data on the factorization of the integers, at a cost of **higher memory**.

Variants of Eratosthenes:

- Add one at each sieving step: get number of distinct prime factors.
- With only 2 bits per position, one can get the numbers that contain exactly two distinct primes.

Variants of Eratosthenes (cont'd):

- Initialize position *n* with integer *n*. When sieving, divide the value by *P* as long as we can. Keep the divided values. This gives the **full factorization** of all numbers up to *N*.
- Initialize position n with approximation of log n. When sieving, subtract log P. In the end, positions with a small remaining value are likely to be smooth (not exact, due to powers).

Rem. Applies to various sets of inputs:

- Need the property $T[i + P] \equiv T[i] \mod P$, for all P that we want to sieve.
- True if T[i] is any rational fraction in *i*.
- For a given *P*, the initial position to mark might be difficult to compute.

In our case, the input is bi-dimensional (indexed by (a, b) pairs).

Various complications:

- Small primes have several hits per row: can sieve row by row (similar to 1D sieving).
- Primes larger than row length hit only a fraction of the rows. Theory of lattices to the rescue. Need to find an appropriate basis, not really reduced in the classical sense.
- Computation of the initial position can be a bit more difficult.

Things to change when working over $\mathbb{F}_p[t]$ instead of \mathbb{Z} :

- Prime numbers replaced by (monic) irreducible polynomials.
- Need conversion 𝔽_p[t] ↔ ℤ, because positions are indexed by polynomials. Usually use Lex-order.
- The set of multiples of a prime p(t) is an \mathbb{F}_p -vector space.

Need to enumerate quickly elements of a vector space: Gray codes

Plan

Context

Setting of the problem

Twenty flavors of Eratosthenes

Fifty shades of Gray codes

Benchmarks, conclusion

Binary Gray code of length 3 over \mathbb{F}_2 :

0	0	0	
1	0	0	
1	1	0	
0	1	0	Only one bit flip between two lines
0	1	1	Only one bit-flip between two lines.
1	1	1	
1	0	1	
0	0	1	

Enumerating an \mathbb{F}_2 -vector space of dim k with basis $\{e_1, \ldots, e_k\}$: Add successively vectors corresponding to sequence of bit-flips.

Gray sequence for *p*-ary Gray codes

- 2-ary sequence: (0,1,0,2,0,1,0,3,...) = 2-adic valuations of 1,2,3,4,5,...
- 3-ary sequence: (0,0,1,0,0,1,0,0,2,0,...) = 3-adic val. of 1,2,3,4,5,... = t-adic valuations of polys in F₃[t] in Lex order.
- *p*-ary sequence: *t*-adic val. of polys in Lex order.
 Can be defined recursively by

$$\Delta_0 = (), \qquad \Delta_{i+1} = (\Delta_i, i, \Delta_i, \dots, i, \Delta_i),$$

with Δ_i repeated *p* times.

Why? Expressions to test for smoothness are homogeneous. Hence, can force b(t) to be monic. Reduces the search space.

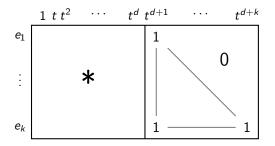
How? Take a basis $\{e_1, \ldots, e_k\}$ that is monic and **echelonized**: deg $e_i < \deg e_{i+1}$.

To ensure that the most-significant coeff is one, the recursive definition becomes:

$$\Delta'_0 = (), \qquad \Delta'_{i+1} = (\Delta'_i, i, \Delta_i).$$

E.g. The 3-ary monic Gray sequence is (0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, ...).

Take an "all-one-triangular" basis:



Fact. *p*-ary Gray code enumerates $\text{Span}(e_1, \ldots, e_k)$ in Lex order. "*Proof*": The part $\sum t^j$ of e_i emulates the carry propagation.

(**Rem**. Yes, we can do it for monic as well.)

Plan

Context

Setting of the problem

Twenty flavors of Eratosthenes

Fifty shades of Gray codes

Benchmarks, conclusion

Benchmark for $\mathbb{F}_{2^{1039}}$

Parameters:

Max. deg. of sieved primes (fac	ctor base bound) 25	5
Max. deg. of large primes (smc	othness bound) 33	3
Threshold degree for starting co	ofactorization 99	9

Sieving time, per position:

Step	Cycles/pos	Percentage
Initialize norms	1.10	2.04 %
Sieve by rows	9.73	18.15 %
Fill buckets	31.73	59.21 %
Apply buckets	2.74	5.12 %
Cofactorization	7.43	13.87 %
Total	53.59	100.00 %

In that case, proba of being smooth \approx 2e–8. Hence about 1 s/rel.

The computation is not finished.

Currently, the matrix is a bit too big, so we do a lot of **oversieving**. Still no clear idea of the total running time for discrete log in this field. Joint work with: R. Barbulescu, C. Bouvier, H. Jeljeli, E. Thomé, P. Zimmermann. http://eprint.iacr.org/2013/197

Note: 809 is **prime**. Previsous was 613 (Joux-Lercier, 2005). All recent records (in particular based on the L(1/4) algorithm by Joux) are for composite degree extensions, which are much easier.

Running time:

- Relations: 32M rels collected in 18,000 hours on one core of Intel Core i5-2500.
- Filtering: reduce to a matrix of size 4.46M, with 100 coeffs per row. Negligible time (quality of output is important).
- Linear algebra: 1,300 hours on an Nvidia GTX 680 GPU.
- Individual logs: around 1 hour.

Conclusion

- **Sieving** is very efficient. Many funny complications when switching from integers to polynomials.
- Crossover point between FFS and Joux's new algorithm still to be determined for prime degree extensions.
- Our relation collection implementation can be used for both.
- It is available under LGPL: feel free to play with it!

http://cado-nfs.gforge.inria.fr/

(In the ffs/ subdirectory of the git repo.)