
Relation collection for the
Function Field Sieve

Jérémie Detrey, Pierrick Gaudry and Marion Videau

INRIA / CNRS / Université de Lorraine

ARITH 21 – April 10, 2013

1/28

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

2/28

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

3/28

Hard problems in cryptography

Public key cryptography security relies on (supposedly):
Computationally hard problems

Currently in use:

Integer factorization (RSA)
Discrete logarithm in finite fields (DSA, ElGamal)
Discrete logarithm in elliptic curves (ECDSA)

Also widely studied:

Discrete log in hyperelliptic curves
Systems based on error correcting codes
Lattice-based systems
Systems based on polynomial systems

4/28

Hard problems in cryptography

Public key cryptography security relies on (supposedly):
Computationally hard problems

Currently in use:

Integer factorization (RSA)
Discrete logarithm in finite fields (DSA, ElGamal)
Discrete logarithm in elliptic curves (ECDSA)

Also widely studied:

Discrete log in hyperelliptic curves
Systems based on error correcting codes
Lattice-based systems
Systems based on polynomial systems

4/28

Basic index calculus (after Adleman)
Let Fpn be a finite field, with small p (think p = 2 or 3).
Choose ϕ(t) ∈ Fp[t] irreducible of degree n, such that

Fpn = Fp[t]/ϕ(t).

Let g(t) be a generator of F∗pn , and h any element.
Discrete log problem (DLP): find x such that h = gx .

Collect relations:

For random z , compute g(t)z mod ϕ(t);
Check if it is B-smooth, i.e. it is a product of irreducible
factors πi of degree at most B.
If yes, g(t)z =

∏
πi (t)ei , and taking the log yield a linear

relation:
z =

∑
ei log πi (t)

5/28

Basic index calculus (cont’d)
Linear algebra:

Put each relation in the row of a matrix, where columns are
labelled by the πi ’s.
Get the values of log πi by linear algebra.
Having enough relations guarantees that there is a unique
solution.

Individual logarithm:

For random z , compute h(t)g(t)z mod ϕ(t);
Check if it is B-smooth;
If so, log h = −z + (logs of known elements).

Analysis: Highly depends on the probability for a polynomial to be
B-smooth. Get a subexponential complexity ≈ exp(

√
n).

6/28

Current situation

The best methods known are variants of the basic index calculus.
They depends on the type of field:

Prime field Fp: Number Field Sieve. Time ≈ exp(3√log p).
Field of small characteristic Fpn : Function Field Sieve. Time
≈ exp(3

√
n).

Medium prime case: also ≈ exp(3√n log p).
Fields of tiny characteristic: Joux’s algorithm (2013). Time
≈ exp(4

√
n).

Rem. Our paper and our software directly apply to the first phase of the
descent in Joux’s algorithm when applied to prime degree extensions of
F2.

7/28

Current situation

The best methods known are variants of the basic index calculus.
They depends on the type of field:

Prime field Fp: Number Field Sieve. Time ≈ exp(3√log p).
Field of small characteristic Fpn : Function Field Sieve. Time
≈ exp(3

√
n).

Medium prime case: also ≈ exp(3√n log p).
Fields of tiny characteristic: Joux’s algorithm (2013). Time
≈ exp(4

√
n).

Rem. Our paper and our software directly apply to the first phase of the
descent in Joux’s algorithm when applied to prime degree extensions of
F2.

7/28

Current situation

The best methods known are variants of the basic index calculus.
They depends on the type of field:

Prime field Fp: Number Field Sieve. Time ≈ exp(3√log p).
Field of small characteristic Fpn : Function Field Sieve. Time
≈ exp(3

√
n).

Medium prime case: also ≈ exp(3√n log p).
Fields of tiny characteristic: Joux’s algorithm (2013). Time
≈ exp(4

√
n).

Rem. Our paper and our software directly apply to the first phase of the
descent in Joux’s algorithm when applied to prime degree extensions of
F2.

7/28

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

8/28

Relation collection
Given:

Base ring = Fp[t], where p = 2 or 3;
Two bivariate polynomials f (x) and g(x):

f (x) = x6 + f5(t)x5 + · · ·+ f1(t)x + f0(t)
g(x) = x + g0(t),

where deg fi (t) = O(1) and deg g0(t) = large.
A smoothness bound B.

Looking for:
A relation is a pair (a(t), b(t)) of polynomials such that both
f (a/b)bdegx f and a(t)− g0(t)b(t) are B-smooth.
Need millions of them (well. . . billions).

Rem: Explaining the way the matrix is built requires a bit more theory,
but the general idea is close to Adleman’s basic algo.

9/28

Relation collection – example
For solving DLP in F21039 , one can take

f = x6 + (t2 + t + 1)x5 + (t2 + t)x + (t12 + t10 + t8 + t5 + t3 + t)

g = x + (t174+t20+t19+t18+t17+t15+t14+t13+t12+t11+t8+t7+t5+t+1)

(This is because Resx (f , g) has an irreducible factor of degree 1039.)
Let

a(t) = t23 + t22 + t20 + t19 + t16 + t15 + t14 + t13 + t12 + t11 + t7 + t2 + t,

b(t) = t22 + t21 + t18 + t16 + t14 + t10 + t9 + t8 + t4 + t3 + t + 1

Then both a6 + f5a5b + f1ab5 + f0b6 and a + g0b have irreducible
factors (in t) of degree at most 33.
We write this relation in hexa:
d9f886,65471b

:2,7,d,d,d,b,9d,54f41,77a48b,e88e91,1bf57123,ee2d01bb
:7,6d,f1,a79,925,52c5,3a90a07,400004d,52811b33,db40a61b,25380517b

10/28

Relation collection – example (cont’d)

For this example, one need at least one billion of such a,b.

The degrees on both sides are 144 and 196.
The probability that both are 33-smooth is very low (one in
several million).

Can not be satisfied with a trial and error search.

Sieving is the solution.

11/28

Plan

Context

Setting of the problem

Eratosthenes

Gray codes

Benchmarks, conclusion

12/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mark multiples of 2.

13/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mark multiples of 3.

13/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Mark multiples of 5.

13/28

Eratosthenes’ sieve

First goal: find all primes up to a certain bound N.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Remaining positions are prime.

13/28

Eratosthenes’ sieve

Memory requirement. Array of N bits with random access.
Time complexity.
The integer P in the loop takes all prime values up to

√
N.

For each P, we visit bN/Pc positions.
So the total number of operations is

∑
P<
√

N primebN/Pc, which is
essentially

N
∑

P<
√

N prime

1
P .

By Mertens’ theorem, this gives a cost of O(N log logN).

14/28

Sieving for factoring integers

Instead of putting a zero in the array, one can keep further
information.
Depending on the information stored, one can get more or less data
on the factorization of the integers, at a cost of higher memory.

Variants of Eratosthenes:

Add one at each sieving step: get number of distinct prime
factors.
With only 2 bits per position, one can get the numbers that
contain exactly two distinct primes.

15/28

Sieving for factoring integers

Variants of Eratosthenes (cont’d):

Initialize position n with integer n. When sieving, divide the
value by P as long as we can. Keep the divided values. This
gives the full factorization of all numbers up to N.
Initialize position n with approximation of log n. When sieving,
subtract logP. In the end, positions with a small remaining
value are likely to be smooth (not exact, due to powers).

Rem. Applies to various sets of inputs:

Need the property T [i + P] ≡ T [i] mod P, for all P that we
want to sieve.
True if T [i] is any rational fraction in i .
For a given P, the initial position to mark might be difficult to
compute.

16/28

2D sieving

In our case, the input is bi-dimensional (indexed by (a, b) pairs).

Various complications:

Small primes have several hits per row: can sieve row by row
(similar to 1D sieving).
Primes larger than row length hit only a fraction of the rows.
Theory of lattices to the rescue.
Need to find an appropriate basis, not really reduced in the
classical sense.
Computation of the initial position can be a bit more difficult.

17/28

Sieving polynomials

Things to change when working over Fp[t] instead of Z:

Prime numbers replaced by (monic) irreducible polynomials.
Need conversion Fp[t]←→ Z, because positions are indexed
by polynomials. Usually use Lex-order.
The set of multiples of a prime p(t) is an Fp-vector space.

Need to enumerate quickly elements of a vector space:
Gray codes

18/28

Plan

Context

Setting of the problem

Twenty flavors of Eratosthenes

Fifty shades of Gray codes

Benchmarks, conclusion

19/28

Basic Gray code

Binary Gray code of length 3 over F2:
0 0 0
1 0 0
1 1 0
0 1 0
0 1 1
1 1 1
1 0 1
0 0 1

Only one bit-flip between two lines.

Enumerating an F2-vector space of dim k with basis {e1, . . . , ek}:
Add successively vectors corresponding to sequence of bit-flips.

20/28

Gray sequence for p-ary Gray codes

2-ary sequence:
(0, 1, 0, 2, 0, 1, 0, 3, . . .) = 2-adic valuations of 1, 2, 3, 4, 5, . . .
3-ary sequence:
(0, 0, 1, 0, 0, 1, 0, 0, 2, 0, . . .) = 3-adic val. of 1, 2, 3, 4, 5, . . .

= t-adic valuations of polys in F3[t] in Lex order.
p-ary sequence: t-adic val. of polys in Lex order.
Can be defined recursively by

∆0 = (), ∆i+1 = (∆i , i ,∆i , . . . , i ,∆i),

with ∆i repeated p times.

21/28

Monic Gray codes

Why? Expressions to test for smoothness are homogeneous.
Hence, can force b(t) to be monic. Reduces the search space.

How? Take a basis {e1, . . . , ek} that is monic and echelonized:
deg ei < deg ei+1.
To ensure that the most-significant coeff is one, the recursive
definition becomes:

∆′0 = (), ∆′i+1 = (∆′i , i ,∆i).

E.g. The 3-ary monic Gray sequence is
(0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, . . .).

22/28

Enumerating in Lex order (non-monic)

Take an “all-one-triangular” basis:

1

11

0
*

e1

ek

...

1 t t2 · · · td td+1 · · · td+k

Fact. p-ary Gray code enumerates Span(e1, . . . , ek) in Lex order.
“Proof”: The part

∑
t j of ei emulates the carry propagation.

(Rem. Yes, we can do it for monic as well.)

23/28

Plan

Context

Setting of the problem

Twenty flavors of Eratosthenes

Fifty shades of Gray codes

Benchmarks, conclusion

24/28

Benchmark for F21039

Parameters:

Max. deg. of sieved primes (factor base bound) 25
Max. deg. of large primes (smoothness bound) 33
Threshold degree for starting cofactorization 99

Sieving time, per position:

Step Cycles/pos Percentage
Initialize norms 1.10 2.04 %

Sieve by rows 9.73 18.15 %
Fill buckets 31.73 59.21 %

Apply buckets 2.74 5.12 %
Cofactorization 7.43 13.87 %

Total 53.59 100.00 %

In that case, proba of being smooth ≈ 2e-8. Hence about 1 s/rel.
25/28

Benchmark for F21039

The computation is not finished.

Currently, the matrix is a bit too big, so we do a lot of oversieving.
Still no clear idea of the total running time for discrete log in this
field.

26/28

New record: F2809

Joint work with: R. Barbulescu, C. Bouvier, H. Jeljeli, E. Thomé,
P. Zimmermann. http://eprint.iacr.org/2013/197

Note: 809 is prime. Previsous was 613 (Joux-Lercier, 2005). All
recent records (in particular based on the L(1/4) algorithm by
Joux) are for composite degree extensions, which are much easier.
Running time:

Relations: 32M rels collected in 18,000 hours on one core of
Intel Core i5-2500.
Filtering: reduce to a matrix of size 4.46M, with 100 coeffs
per row. Negligible time (quality of output is important).
Linear algebra: 1,300 hours on an Nvidia GTX 680 GPU.
Individual logs: around 1 hour.

27/28

http://eprint.iacr.org/2013/197

Conclusion

Sieving is very efficient. Many funny complications when
switching from integers to polynomials.
Crossover point between FFS and Joux’s new algorithm still
to be determined for prime degree extensions.
Our relation collection implementation can be used for both.
It is available under LGPL: feel free to play with it!

http://cado-nfs.gforge.inria.fr/

(In the ffs/ subdirectory of the git repo.)

28/28

http://cado-nfs.gforge.inria.fr/

	Context
	Setting of the problem
	Eratosthenes
	Fifty shades of Gray codes
	Benchmarks, conclusion

