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Approximate arithmetic units have the potential to save power,
area, and latency over conventional circuits.

Approximate logarithmic conversion is attractive because it can
estimate multiplication, division, rooting, and raising to a
power with bounded relative error.

Known application areas include:
Graphics
Neural networks
DSP applications

Specialized circuitry
period meters for nuclear power plants



For example, division of logs can be performed using subtraction.

logy(a/b) = logy(a) — logy(b)
a/b — 2loB2(a)—loga(b))

Approximate logarithms can be used to cheaply approximate
fixed-point division.

2/b ~ 3R —o(b))



Many approximate conversion schemes exist (differ in precision,
latency, cost, and flexibility).

The least costly (and least precise) schemes use piece-wise linear
interpolation. All such schemes refine a simple linear interpolation
scheme (Mitchell, 1962).

The precision of interpolation should be proportional to the
precision of the final result.

Rounding off the log and anti-log approximation reduces their
costs, and can actually improve the average precision of the result.

Truncated logarithmic approximation can be used as a drop-in
replacement for Mitchell's scheme, improving its cost and precision.



A fixed-point input, N can be written as N = 2% x (1 + ).
k is the characteristic (0 <k <log,(N))
f is the fractional component (0<f < 1)

The binary logarithm of N is log,(N) = k + log,(1 + f).
Approximate logarithmic computations approximate log,(1 + f)
with enough fidelity to achieve a set precision.



Mitchell estimates log,(1+f) using a single straight-line
approximation to the logarithm curve, f~log,(1+f)
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(a) Logarithm Generation

Approximate log and anti-log conversion.
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Hardware costs are dominated by two shifters:
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(b) Anti-Log Shifter (after multiplication)
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Shifters for approximate (anti-)logarithmic conversion.
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The error in Mitchell's log approximation.



Truncated logarithmic approximation replaces Mitchell’s algorithm,
retaining only the t most-significant bits of the fractional
component.
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The impact of truncation on the log generation shifter.
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b) Trunc. Log Shift (t = 4)



Hardware Savings - Anti-Log Generation
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(a) Full Anti-Logarithm Shifter
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(b) Truncated Anti-Log Shift (t=4)
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(c) Up-Rounded Values
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(d) Up-Rounded Error

The error of upward-rounded truncation.



Cost (UGM)
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(a) Cost Across t (n=32)
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(b) Cost Across n (t=4)

The relative costs of truncated log gen/anti-gen.
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Exploring the n/t landscape.
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Truncation applied to Combet et. al.’s correction scheme.



A Novel Error Correction Scheme with Truncation
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Figure: Novel error correction for truncated logarithms.



Precision and Cost of Truncated Mitchell Analogues (n = 32).

Technique Min. | Max. | Max. Abs. | Average Cost
Error | Error Error Abs. Error

Mitchell -0.086| 0 0.086 0.057 1.0

logo—14(t=4) |-0.086/0.062| 0.086 0.035 |0.57

Iog2,TT+EC4(teC:2) -0.081/0.078 0.081 0.028 0.60

Iog2_7T+EC4(teC:3) -0.066|0.070 0.070 0.024 0.61

Iog2_TT+EC4(teC:4) -0.061|0.066| 0.061 0.023 |0.63




Truncated approximate logarithms improve piecewise-linear
approximate logarithm computations. They are based off of the
intuition that the internal precision of a conversion scheme
should be proportional to the precision of the approximation.

Benefits:
Decrease cost (up to ~50%)
May improve the precision of results
Amenable to existing error reduction techniques

May allow unique truncation-specific error reduction



Delay and cost (energy) estimated using a unit-gate model:
Simple 2-input gates (AND, OR) [C =1, T =1]
2-input XOR gates and MUXes [C =2, T = 2]

m-input gates composed of a tree of 2-input gates

Advantages of the unit gate model:
Offers a rough technology-agnostic model for circuit efficiency
Betters understanding of scaling properties, bottlenecks

Can be used for rapid design-space exploration

Inverters, buffering, and wiring concerns are ignored, but:
Limited fan-out components are used

Wiring stays roughly equivalent after truncation



	I & M
	Approximate Logarithmic Conversion
	Truncated Logarithmic Approximation
	Backup

