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Motivations (1/2)

@ Polynomials play a central role in computational and applied
mathematics

@ The determination of the zeros of polynomials is a classical
problem of computational mathematics

e Inverse problem : given the zeros, determine the coefficients of
the polynomial
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Motivations (2/2)

Characteristic polynomial of a n x n matrix A
det(AI—A) = A"+ A"+ + cp1 A + ¢y
c; = trace(A) ¢, = det(A4)

Eigenvalues: (1) fori=1,...,n

n n

— the ¢; are elementary symmetric functions of the A;
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Outline of the talk

Motivations

Classical Summation Algorithm
@ Error-free transformations
e Compensated Summation Algorithm

@ Conclusion and future work
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Elementary Symmetric Functions (ESF)

The k-th Elementary Symmetric Function (ESF) associated with a
vector of n numbers X = (xy,...,X,) is defined by

SEC")(X) = > Xmy Xy X, With 1<k<n

1sm<.<mp<n

For k=0, S(()") =1

The k-th function S;C”) (X) consists of (Z) summands

— straightforward computation is very expensive
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Applications of computing ESF

@ The ESFs appear when expanding a linear factorization of a
polynomial

n n . n . .
[Ta-—x) =Y cix'=Y (D" 'S (x1,..., x) %"
i=1 i=0 i=0

One can evaluate polynomial’s coefficients {c;}" , from its zeros
{xi}?" ,, specially compute characteristic polynomials from
eigenvalues

@ Part of conditional maximum likelihood estimation (CMLE) of
item parameters under the Rasch model in psychological
measurement. Accurate evaluation allows much more items to
be calibrated

@ Thermodynamic properties of systems of fermions
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Condition number of ESF

Condition numbers measure the sensitivity of the solution of a
problem to perturbation in the data

Definition 2 (Condition number of the k-th ESF)

1S (X +AX) - S (X)]

(n) —1; .
cond(S{” (X)) = limsup{ ECr 1AX] <elX|}
A direct calculation yields
kS (1X1)
cond (S (X)) = ————
1S (X0

In particular, cond(Sf,L”) (X)) = cond([T%, x;) = nand
Cond(S(ln) X)) = Cond(Z?zl xi) — Zi=1 ||

D
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Classic Summation Algorithm

Algorithm 1

Input: X = (x,...,x,) and k
Output: k-th ESF S;cn) X) = S;C”)
function S;C"):SumESF(X k)
Sg):l,lsisrz—l; S(’) 0,j>i Sil):xl;
fori=2:n
for j=max{l, i+ k— n} : min{i, k}
87 =8V + xS
end
end

() _ () —
S S (x1,..., %) = len1<...<njsixn1x7r2 oo X

Substitution of j = 1 ifor j=max{l1, i+ k— n} : min{i, k} makes it
possible to compute all ESF simultaneously
— Algorithm used in MATLAB poly function
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Standard model of floating-point arithmetic

Assume floating point arithmetic adhering IEEE 754 with rounding
to nearest with rounding unit u (no underflow nor overflow)

Letx,yeFandoe€ {+,—,-/}.
The result xo y is not in general a floating-point number
fl(xoy) = (xoy)(1+6), [6l<u

IEEE 754 standard (2008)

Type ‘ Size ‘ Mantissa ‘ Exponent ‘ Unit rounding ‘ Interval
binary32 | 32bits | 23+1bits | 8bits u=21"2%21,92x10"7 | =10%38
binary64 | 64bits | 52+1bits | 11 bits u=21"5%222x10716 | ~10%308
We denote
nua
Yn:=
1-rnu
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Rounding error analysis

Theorem 1 (Rehman, Ipsen (2011))

If X = (x1,...,Xp) is a vector of floating-point numbers, the computed
k-th elementary symmetric function S(") S(") (X) by Algorithm 1 in
floating-point arithmetic verifies

3 _ g
k k (n)
| = gy neonds, 2< k< n-1,

iy il

_— — ) k: 1;
s ! X, xi

1
< ;yn_lcond(S%")) =Yn-1, k=n.
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Getting more accuracy with compensated

algorithms

Error-free transformations are properties and algorithms to
compute the generated elementary rounding errors,

a,bentries €eF, aob=1l(aob)+e, witheclF

Key tools for accurate computation

e fixed length expansions libraries: double-double (Briggs, Bailey,
Hida, Li), quad-double (Bailey, Hida, Li)

e arbitrary length expansions libraries: Priest, Shewchuk

e compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet, etc.)
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EFT for the summation

x=fllath) = axb=x+y withyeF,
Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 2 (EFT of the sum of 2 floating point numbers

with |a| = |b|)

function [x, y] = FastTwoSum(a, b)
x=a®b
y=(asex)eb

Algorithm 3 (EFT of the sum of 2 floating point numbers)

function [x, y] = TwoSum(a, b)
xX=a®b
z=x9a
y=(ae(xez) & (bez)
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EFT for the product (1/3)

x=flla-b) = a-b=x+y withyeF,
Algorithm TwoProduct by Veltkamp and Dekker (1971)

a=x+y and xand ynon overlapping with [y| < |x].

Algorithm 4 (Error-free split of a floating point number
into two parts)

function [x, y] = Split(a)
factor=2%+1 %u=2"P,s=[p/2]
c=factor®a
x=co(coa)
y=aex
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EFT for the product (2/3)

Algorithm 5 (EFT of the product of 2 floating point
numbers)

function [x, y] = TwoProduct(a, b)
x=a®b

[a1, a2] = Split(a)
(D1, by] = Split(b)
y=m®bho(xea®b))oa®by)ea; ®by)

Theorem 2

v

Leta,beF and let x,y € F such that [x,y] = TwoProduct(a, b) . Then,

a-b=x+y, x=fl(a-b), |yl<ulxl, |yl<ula-bl,

The algorithm TwoProduct requires 17 flops.
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EFT for the product (3/3)

Given a, b, ce T,
@ FMA(a, b, ¢) is the nearest floating point number a- b+ ceF

Algorithm 6 (EFT of the product of 2 floating point

numbers)

function [x, y] = TwoProductFMA(a, b)
x=a®b
y=FMA(a, b,—x)

The FMA is available for example on PowerPC, Itanium, Cell, Xeon
Phi processors.
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Compensated Summation Algorithm

Algorithm 7

Input: X = (x1,.. xn) and k
Output: k-th ESF 50 =5
function Sk :CompSumESF(X, k)

S0 =11=isn-1;8"=0,j>i 8V =x;¢5 =0,V i,j
fori=2:n

for j=max{l,i+ k— n} : min{j, k}

Ip, ﬁ”’] = TwoProd(x;, s](’ Dy, % s](.” = gD 4 xis](.f‘l”
[S]m ](l)] —TwoSum(S(l Vo)
1 —(i—-1
Sm S(l ‘o (,6](.’7 eaa]@) eaxl®eS](-l_1 )
end
end

= 01) BN
S¢) =3 @esy”
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Error bound on the Compensated Summation

Algorithm

For a vector of n floating-point numbers X = (x1,...,Xy), the relative
forward error bound in Algorithm satisfies

(n

<M
Sy — S

2 (n)
S;C”) <u+ Eyz(n_l)cond(sk (X)),

<u+ yi_lcond(SY’)),

<u+ 1 (1)
< YnY2ncond(S;,"),
n

with2 < k<n-1, k=1, k= n, respectively.
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Validated Running Error bound on the

Compensated Summation Algorithm (1/2)
Algorithm 8

Input: X = (x1,...,x,) and k

Output: k- th ESF Sgcn) X) = S & " and Running Error Bound p

function [Sk ,p]:CompSumESFwErr(X, k)
§éD=1,1sisn—1; 3;’)=0,j>i; CREEYY

¢S =0,E5; =0,V i ]
fori=2:n

for j=max{l, i+ k— n} : min{i, k}
(P, ﬁ]m] = TwoProd(x;, Si"\"); 187,01 =
S(l) S(l D
ESm —ES(l 1)

end
end

TwoSum(S(i_l), D);
1
® (ﬁ}” ® o}’j) DX ® eSU )

1
a1 @0 x| s Es“ )

[gkn), gl= FastTwoSm(ggc”),Eggcn))

& = Faen ® BSy") @ (1 - 3nu); p=(dea el -2u
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Validated Running Error bound on the

Compensated Summation Algorithm (2/2)

Assume3nu < 1, then a running error bound of Algorithm 8 is given
by

5 si<n(1228) o,

1-2u
where @ is the “error bound” on the rounding errors and c is obtained
by [S’ﬁc”), c = FastTwoSum(/S("),Esgcm).
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Library double-double

A double-double number a is the pair (ay, a;) of IEEE-754
floating-point numbers with a = a;, + a; and |a;| < ulay|.

Algorithm 9 (Product of a d-d (ay, a;) by a d b)

function [cy, ¢;] = prod_dd_d(ay, a;, b)
[Sp, $1] = TwoProduct(ay, b)
[y, ;] = FastTwoSum(sy, (a; ® b))
[cy, 7] = FastTwoSum(ty, (1@ s;))

Algorithm 10 (Addition of a d b and a d-d (ay, a;))

function [cy, ¢;] = add_dd_d(ay, a;, b)
[£h, 1] = TwoSum(ay, b)
[cy, ¢l = FastTwoSum(ty, (1@ ap))
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Accurate Summation Algorithm with
double-double

Algorithm 11

Input: X = (x,...,x,) and k
Output: k-th ESF 8!’ (X) = 87 = Sh{"

function [Sh}c’”, Sl;cn)]:DDSumESF(X, /%)
SH)=1,1<isn-1;

sz]@:o,Vi,j
fori=2:n

Sh](.’) =0,j>1i; Sh(ll) =X1;

for j=max{l, i+ k— n} : min{i, k}

[rh, rl] = prod_dd_d(Sh{"", SEV, xi);

[Sh{", S = add_dd_dd(rh, rl, Sh'™", SI'™)
end
end

S. Graillat (Univ. Paris 6)

Accurate and Fast Evaluation of ESF



Accuracy with double-double (1/2)

For a standard model of floating-point arithmetic for the
double-double algorithms

fllac b) = (ao b)(1+0),

where a, b are in double-double format, o€{+, —, x,/}, and § is
bounded as follows

6l <ugg foroe{+,—}; 6l <2uy4q foroe{x,/}

— 2—105

where uyy = 2u? is the roundoff unit in double-double

format.
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Accuracy with double-double (2/2)

The values §E§C’” and §l§cn) returned by Algorithm 11 in floating-point
arithmetic satisfy

<
|Shy. —S{”|

50 <u+-(l+ WYs5(,_1ycond (S (X)),
k

where
_ 3(n-Nugg _ 6(n—1u?

Y3(n—1) = 1 _3(n— l)udd B 1-— 6(n_ 1)“2 .
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Numerical experiments (1/2)
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Numerical experiments (2/2)

Time ratios of computing for k-th ESF (case 1) and for all ESF (case 2)

CompSumESF DDSumESF CompSumESF CompSumESF
SumESF SumESF DDSumESF CompSumESFwErr
Case 1 3.05 5.42 57.42% 69.91%
Case 2 3.91 7.48 52.97% 68.02%
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Conclusion and future work

Conclusion

@ A fast algorithm to computed the Symmetric Elementary
Functions as accurate as if computed with twice the working
precision

Future work

@ An algorithm making it possible to deal with complex numbers

@ An algorithm to compute a faithfully rounded result and then a
correctly rounded result
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Thank you for your attention
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