21st IEEE Symposium on Computer Arithmetic (ARITH'21)

Austin, Texas, USA, April 7-10, 2013 Speaker: **Mourad Gouicem***

Fault Detection in RNS Montgomery Modular Multiplication

Jean-Claude Bajard*, Julien Eynard*, Filippo Gandino†

*LIP6 CNRS - Univ. Paris 6, France †Politecnico di Torino, Italy

April 9th, 2013

Motivation

Using Residue Number Systems in cryptosystems?

- Efficiency of RNS arithmetic for RSA, ECC and pairings...
 - N. Guillermin Implémentation matérielle de coprocesseurs haute performance pour la cryptographie asymétrique. PhD. thesis, Univ. Rennes 1, 2012.
- ...on several architectures (FGPA, GPU).
 - S. Antao, J.-C. Bajard, L. Sousa. *RNS-Based Elliptic Curve Point Multiplication for Massive Parallel Architectures*. The Computer Journal, Oxford University Press, 2012.
 - R. Cheung et al. *FPGA implementation of pairings using residue number system and lazy reduction*. Lecture Notes in Computer Science, Springer, 2011.
- Creation of a Leak Resistant Arithmetic (LRA) based on RNS.
 - J.-C. Bajard, L. Imbert, P.-Y. Liardet, Y. Teglia. *Leak Resistant Arithmetic*. Lecture Notes in Computer Science, Springer, 2004.

Goal

To exploit particularities of RNS to construct an efficient arithmetic for cryptographic applications.

ightarrow So, what about protection of the RNS modular multiplication against fault injection attacks?

About RNS - Residue Number Systems

Chinese Remainder Theorem (CRT)

Let m_1, \ldots, m_n be coprime integers, $M := m_1 \ldots m_n$.

Then $\mathbb{Z}/M\mathbb{Z}$ is isomorphic to $\mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_n\mathbb{Z}$.

Definition

- $\{m_1, \ldots, m_n\}$ is a "RNS base".
- ullet [0,M[= usual "dynamic range"; $\mathbb{Z}/m_i\mathbb{Z}=$ "a channel".
- For $x \in [0, M[$, $x_i = |x|_{m_i} = x \mod m_i$ is the i^{th} residue of x.
- Addition, subtraction, multiplication and exact division are performed in each channel.
- No carry propagation → indepency between channels.
- **But**, RNS = no positional number system \rightarrow comparison? modular reduction? computations in $\mathbb{Z}/P\mathbb{Z}$?

About RNS - Modular multiplication

Classical Montgomery modular multiplication : $a \times b \mod p$

Montgomery's technique : to choose an integer M such that division and modular reduction by M are easy! (e.g. $M=2^k$)

Algorithm 1 Montgomery reduction

Require: p, M, such that gcd(p, M) = 1 and ab < Mp

1.
$$q \leftarrow \left| -abp^{-1} \right|_M$$

2.
$$s \leftarrow \frac{ab+qp}{M}$$

return s < 2p, $s \equiv abM^{-1} \mod p$

Adaptation to RNS

q easy to compute in RNS base \mathcal{B} (\leadsto M). But division by M? Solution : auxiliary base \mathcal{B}' coprime to \mathcal{B} .

J.-C. Bajard., L.-S. Didier, P. Kornerup An RNS Montgomery Modular Multiplication Algorithm. IEEE Transac. on Comp., 1998.

J.-C. Bajard., L.-S. Didier, P. Kornerup *Modular Multiplication, and Base Extension in Residue Number Systems*. ARITH15, 15th IEEE symposium on computer arithmetic, 2001.

About RNS - Modular multiplication

Overview of the RNS algorithm

in base \mathcal{B} (mod M)	base conversion	in base \mathcal{B}' (mod M')
$q = -abp^{-1}$		-
q	\Rightarrow	q
- (0)		t = ab + qp
- (?)		$s = tM^{-1}$
S	←	S

About RNS - Base conversions

Based on the CRT

Given
$$x_1, ..., x_n$$
, $M_i := M/m_i$, $\xi_i := |x_i M_i^{-1}|_{m_i}$,

$$x = \left| \sum_{i=1}^{n} \xi_i M_i \right|_{M} = \sum_{i=1}^{n} \xi_i M_i - k_x M$$

- \rightarrow Computation of $k_x = \lfloor \sum_{i=1}^n \frac{\xi_i}{m_i} \rfloor < n$?
 - Shenoy and Kumaresan (89): by adding an extra channel $m_{sk} \ge n$ so that $|k_x|_{m_{sk}} = k_x$. Requires to know $|x|_{m_{sk}}$.
 - Bajard, Didier, Muller (97), Kawamura et al (00) : approx. $\lfloor \sum_{i=1}^n \frac{trunc(\xi_i)}{2^r} \rfloor, \text{ where } 2^{r-1} < m_i < 2^r \text{ for all } i. \text{ Computed by a unit called "Cox"}.$

Main base conversion techniques

Based on the associated Mixed Radix System (MRS)

Associated MRS : $\{1, m_1, m_1 m_2, \dots, m_1 m_2 \dots m_{n-1}\}$ From x_1, \dots, x_n , MRS coef. of x are :

$$\tilde{x}_{1} = x_{1}$$

$$\tilde{x}_{2} = |(x_{2} - \tilde{x}_{1}) m_{1}^{-1}|_{m_{2}}$$

$$\tilde{x}_{n} = |(\dots (x_{n} - \tilde{x}_{1}) m_{1}^{-1} - \dots - \tilde{x}_{n-1}) m_{n-1}^{-1}|_{m_{n}}$$

$$x = \tilde{x}_1 + \tilde{x}_2 m_1 + \ldots + \tilde{x}_n m_1 \ldots m_{n-1}$$

Locality condition

Practically, alteration of few bits (e.g. laser shot) \Rightarrow focus on one channel.

What if a fault during a base conversion?

What if a fault during a base conversion?

During the 3 types of conversion : computations only in channels. E.g. :

Localized fault during a base conversion = single fault in \mathcal{B} or in \mathcal{B}' .

Fault model

Formalisation

Theoretically, fault in a ring $\mathbb{Z}/m\mathbb{Z}$ (i.e. a single channel).

$$(x_1, \ldots, x_{i-1}, |x_i + e_i|_{m_i}, x_{i+1}, \ldots, x_n) \to \overline{x} = x + a_i M_i \in [0, M[], a_i \in]-m_i, m_i[.$$

Redundant RNS and base conversion enable to detect such faults.

Redundant RNS and fault detection

- Redundant modulus $m_R : [0, M[\rightsquigarrow [0, m_R M[$.
- Single fault : $\overline{x} = x + a_i M_i \mathbf{m_R}$.
- $m_R > m_i$ and $m_R \wedge M \Rightarrow \overline{x} \in [\![M, m_R M]\!]$.
 - $\rightarrow [0, M] = \text{correct values}; [M, m_R M] = \text{incorrect values}$

Redundant RNS and fault detection

- Redundant modulus $m_R : [0, M[\rightsquigarrow [0, m_R M[$.
- Single fault : $\overline{x} = x + a_i M_i \mathbf{m_R}$.
- $m_R > m_i$ and $m_R \wedge M \Rightarrow \overline{x} \in [\![M, m_R M]\![]$. $\rightarrow [\![0, M]\![] = \text{correct values}; [\![M, m_R M]\![] = \text{incorrect values}$
- Consistency check :

Redundant RNS and fault detection

- Redundant modulus $m_R : [0, M[\rightsquigarrow [0, m_R M[$.
- Single fault : $\overline{x} = x + a_i M_i \mathbf{m_R}$.
- $m_R > m_i$ and $m_R \land M \Rightarrow \overline{x} \in \llbracket M, m_R M \rrbracket$. $\rightarrow \llbracket 0, M \rrbracket = \text{correct values} ; \llbracket M, m_R M \rrbracket = \text{incorrect values}$
- Consistency check :

- Already known with MRC based checks.
- Proven: works with CRT based checks.

Redundant RNS modular multiplication?

 \rightarrow Beware! Base conversion = costly.

The proposed algorithm

main base $\mathcal{B} \pmod{M}$	base conversion/extension	auxiliary base $\mathcal{B}' \pmod{M'}$	redundant channel (mod m_R)
$q = -abp^{-1}$		-	-
q	$Bex_1(q) \Rightarrow$	q	q
- (0)		t = ab + qp	ab + qp
- (?)		$s = tM^{-1}$	$(ab+qp)M^{-1}$
s	$\Leftarrow \operatorname{Bex}_2(s \mod M')$	s	_

Cat. 2 : Integrity of $s \mod m_R M' \to \text{consistency check based on Bex}_2$? Yes : $s = \frac{t}{M} < M'$ and so $|s|_{m_R} = tM^{-1} \mod m_R$ computable.

Cat. 3: was cat. 1, or needs extra consistency check

Cat. 4 : (i.e. on extra stuff for CRT based conversions)

- in Cox unit : larger bases, or two (little) Cox units...
- in m_{sk} channel : works \rightarrow as category 2.

Cat. 5: obvious...

Cat. 1 : Computation of $|q|_{m_R}$ before Bex₁ ? Impossible. 1 fault on $q \Rightarrow$ many faults on $s \mod M'$... No detection ?!

$$\overline{q_i} \Rightarrow \overline{t} = ab + \mathsf{Bex}_1(\overline{q})p < MM' \Rightarrow \overline{t} = ((0,..,0,\overset{\mathcal{B}}{e_i},0,..,0),(\overline{t_1'},..,\overline{t_n'})).$$

$$\overline{q_i} \Rightarrow \overline{t} = ab + \mathsf{Bex}_1(\overline{q})p < MM' \Rightarrow \overline{t} = ((0,..,0,\overset{\mathcal{B}}{e_i},0,..,0),(\overline{t_1'},..,\overline{t_n'})).$$

Consequences in redundant channel

$$\overline{t} < MM' \quad \Rightarrow \qquad \overline{t} \bmod m_R = ((0, ..., 0, \overset{\mathcal{B}}{e_i}, 0, ..., 0), (\overline{t_1'}, ..., \overline{t_n'})) \bmod m_R$$

$$\Rightarrow \quad \overline{s} \bmod m_R = ((0, ..., 0, \overset{\mathcal{B}}{e_i}, 0, ..., 0), (\overline{t_1'}, ..., \overline{t_n'}))M^{-1} \bmod m_R$$

$$\overline{q_i} \Rightarrow \overline{t} = ab + \mathsf{Bex}_1(\overline{q})p < MM' \Rightarrow \overline{t} = ((0,..,0,e_i,0,..,0),(\overline{t_1'},..,\overline{t_n'})).$$

Consequences in redundant channel

$$\overline{t} < MM' \quad \Rightarrow \qquad \overline{t} \mod m_R = ((0, ..., 0, \overset{\mathcal{B}}{e_i}, 0, ..., 0), (\overline{t_1'}, ..., \overline{t_n'})) \mod m_R$$

$$\Rightarrow \quad \overline{s} \mod m_R = ((0, ..., 0, \overset{\mathcal{B}}{e_i}, 0, ..., 0), (\overline{t_1'}, ..., \overline{t_n'}))M^{-1} \mod m_R$$

Value computed by Bex₂

$$(\overline{t_1'},..,\overline{t_n'})\ M^{-1}\ \mathsf{mod}\ M'\ \mathsf{mod}\ m_R = ((0,\ldots,0),(\overline{t_1'},..,\overline{t_n'}))M^{-1}\ \mathsf{mod}\ m_R$$

$$\overline{q_i} \Rightarrow \overline{t} = ab + \mathsf{Bex}_1(\overline{q})p < MM' \Rightarrow \overline{t} = ((0,..,0,e_i,0,..,0),(\overline{t_1'},..,\overline{t_n'})).$$

Consequences in redundant channel

$$\overline{t} < MM' \quad \Rightarrow \qquad \overline{t} \bmod m_R = ((0,..,0,\overset{\mathcal{B}}{e_i},0,..,0),(\overline{t_1'},..,\overline{t_n'})) \bmod m_R$$

$$\Rightarrow \quad \overline{s} \bmod m_R = ((0,..,0,\overset{\mathcal{B}}{e_i},0,..,0),(\overline{t_1'},..,\overline{t_n'}))M^{-1} \bmod m_R$$

Value computed by Bex₂

$$(\overline{t_1'},..,\overline{t_n'})\ M^{-1}\ \mathsf{mod}\ M'\ \mathsf{mod}\ m_R = ((0,\ldots,0),(\overline{t_1'},..,\overline{t_n'}))M^{-1}\ \mathsf{mod}\ m_R$$

Consistency check:

$$((0,..,0,\overset{\mathcal{B}}{e_i},0,..,0),(\overline{t_1'},..,\overline{t_n'})) \stackrel{?}{=} ((0,...,0),(\overline{t_1'},..,\overline{t_n'})) \text{ mod } m_R \rightarrow \text{single fault model}! \text{ It works}!$$

An architecture

Practically, RNS Montgomery + CRT based conversions with Cox unit.

H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura. *Implementation of RSA algorithm based on RNS Montgomery multiplication*. CHES, 2001.

An architecture

Practically, RNS Montgomery + CRT based conversions with Cox unit.

An architecture

Some informations

- Adapt fault model to size of output registers : $2^{r-1} < m_i < 2^r \Rightarrow m_R \ge 2^r$.
- Area(Detection units + Redondant cell) ≤ Area(Standard cell)
- Time cost during normal work flow : none
- Extra time cost for detection of cat. 3 faults :
 - for 1 mod. mult. $\sim 1/2$
 - ullet for 1 mod. exp. with Montgomery ladder $\sim 1/2\log_2(exponent)$

Comparison to state-of-the-art

Guillermin's technique

N. Guillermin A coprocessor for secure and high speed modular arithmetic. Cryptology ePrint Archive, 2011.

- Specific to Cox-Rower architecture (modified Cox).
- Not compliant with LRA.
- \bullet + \geq 1 extra not redundant channel.
- Several faults? Hard...

Our technique

- Genericity.
- Compliant with LRA.
- Several faults? Easy!

E.g. : RSA-CRT 1024 with Montgomery ladder \rightarrow 2 \times 1024 mod. mult. Guillermin: +5%, us: $+1/(2 \times 1024) \sim 0.05\%$.

Conclusion

The proposed redundant RNS Montgomery multiplication algorithm :

- Genericity
- Time cost during normal work flow : none
- Time cost... just an extra (optional) final base conversion
- Efficiency
- Compliant with a Leak Resistant Arithmetic
- Adaptable to detection of several faults
- ullet Adaptable to RNS Montgomery multiplication in $GF(p^k)$

Thank You! Questions?

jean-claude.bajard@lip6.fr julien.eynard@lip6.fr filippo.gandino@polito.it