Improved Architectures for a FloatingPoint Fused Dot Product Unit

Jongwook Sohn and Earl E. Swartzlander, Jr.
April 8 ${ }^{\text {th }}, 2013$

- Introduction
- Traditional FP Fused Dot Product Unit
- An Enhanced FP Fused Dot Product Unit
- A New Alignment Scheme
- Early Normalization and Fast Rounding Scheme
- Four-Input LZA
- A Dual-Path FP Fused Dot Product Unit
- Far Path Logic
- Close Path Logic
- A Pipelined FP Fused Dot Product Unit
- Results
- Conclusion

- Problem Statement

- Fact - Floating-point operations are widely used for advanced applications:
- 3D graphics, multimedia, signal processing and scientific computations
- Problem - Floating-point operations require complex processes:
- Alignment, normalization and rounding
- Solution -Floating-point fused arithmetic units:
- FP Fused Multiply-Add [2] - [4], FP Fused Add-Subtract [5], [6] and FP Fused TwoTerm Dot Product [7]
- Proposal - Improved floating-point fused two-term dot product unit

Traditional FP Fused Dot Product Unit

- Traditional FP Fused Two-Term Dot Product Unit [7]

- $\mathbf{P}=\mathrm{AB} \pm \mathbf{C D}$
- Useful for FFT butterfly and complex multiplication
- Reduces area by $\mathbf{2 0 \%}$,

Reduces latency by $\mathbf{2 \%}$,
Improves accuracy

Enhanced FP Fused Dot Product Unit

UTE

- Enhanced FP Fused Two-Term Dot Product Unit
- New alignment scheme
- Early normalization
\& Fast rounding
- Four-input LZA

Enhanced FP Fused Dot Product Unit

- New Alignment Scheme
- Before alignment

- If $\mathrm{AB}>\mathrm{CD}$

- If $\mathrm{AB}<\mathbf{C D}$

- Before alignment

- If $\mathrm{AB}>\mathrm{CD}$

- If $\mathrm{AB}<\mathbf{C D}$

- After alignment

Enhanced FP Fused Dot Product Unit

- Early Normalization* and Fast Rounding

- After reduction tree

- Normalization

- Sticky

* $\mathbf{f}=$ number of significand bits
* Previously proposed for the fused multiply-add unit with reduced latency [4].

Enhanced FP Fused Dot Product Unit

- Four-Input LZA

Enhanced FP Fused Dot Product Unit

- Four-Input LZA

- Pre-encoding for Four-input LZA
- $\quad W=A+B-C-D$

$$
w_{i}=a_{i}+b_{i}-c_{i}-d_{i}, \quad w_{i} \in\{-2,-1,0,1,2\}
$$

- $g_{i}=1$ if $w_{i}=1, e_{i}=1$ if $w_{i}=0, s_{i}=1$ if $w_{i}=\overline{1}$
- $g_{i}=2_{i}\left(2_{i+1}+\overline{2}_{i+1}\right)+1_{i}\left(1_{i+1}+0_{i+1}+\overline{1}_{i+1}\right)+0_{i} 2_{i+1}$
- $e_{i}=2_{i}\left(1_{i+1}+0_{i+1}+\overline{1}_{i+1}\right)+1_{i}\left(2_{i+1}+\overline{2}_{i+1}\right)+0_{i}\left(1_{i+1}+0_{i+1}+\overline{1}_{i+1}\right)+$ $\overline{1}_{i}\left(2_{i+1}+\overline{2}_{i+1}\right)+\overline{2}_{i}\left(1_{i+1}+0_{i+1}+\overline{1}_{i+1}\right)$
- $s_{i}=0_{i} \overline{2}_{i+1}+\overline{1}_{i}\left(1_{i+1}+0_{i+1}+\overline{1}_{i+1}\right)+\overline{2}_{i}\left(2_{i+1}+\overline{2}_{i+1}\right)$
- $f_{i}($ pos $)=e_{i-1} g_{i} \bar{s}_{i+1}+\bar{e}_{i-1} s_{i} \bar{s}_{i+1}$ for $W>0$
- $f_{i}(n e g)=e_{i-1} s_{i} \bar{g}_{i+1}+\bar{e}_{i-1} g_{i} \bar{g}_{i+1}$ for $W<0$
- $f_{i}=e_{i-1}\left(g_{i} \bar{s}_{i+1}+s_{i} \bar{g}_{i+1}\right)+\bar{e}_{i-1}\left(s_{i} \bar{s}_{i+1}+g_{i} \bar{g}_{i+1}\right)$

Goto Backup

Enhanced FP Fused Dot Product Unit

- Four-Input LZA
- Leading Zeros and Pre-encoding Pattern for W > 0

W vector	Leading Zeros	Pre-encoding Pattern
$0^{k} 11(x)$	k	$e_{i-1} g_{i} g_{i+1}$
$0^{k} 10(1$ or 0$)$	k	$e_{i-1} g_{i} e_{i+1}$
$0^{k} 10^{l}(\overline{1})$	$k+1$	$e_{i-1} g_{i} e_{i+1} *$
$0^{k} 1 \overline{1}^{l} 1(x)$	$k+l$	$\bar{e}_{i-1} s_{i} g_{i+1}$
$0^{k} 1 \overline{1}^{l} 0(1$ or 0$)$	$k+l$	$\bar{e}_{i-1} s_{i} e_{i+1}$
$0^{k} 1 \overline{1}^{l} 0^{m}(\overline{1})$	$k+l+1$	$\bar{e}_{i-1} s_{i} e_{i+1} *$

* Correction needed
- Concurrent correction logic is required [10] - [12]*

[^0]
- Dual-Path FP Fused Two-Term Dot Product Unit

- Dual path algorithm

1) Far path:
$\left|d i f f_{\text {exp }}\right|>2$
2) Close path:

$$
-2 \leq \operatorname{diff}_{e x p} \leq 2
$$

- Far path skips normalization
- Close path skips alignment
* diff ${ }_{\text {exp }}=A_{\text {exp }}+B_{\text {exp }}-C_{\text {exp }}-D_{\text {exp }}$

Goto Backup

- Far Path Logic

- Significand swap
- Alignment \& sticky
- Reduction Tree

Dual-Path FP Fused Dot Product Unit

- Close Path Logic

- Small alignment (≤ 2)
- Reduction Trees
- LZA \& Normalization

Go Back

Pipelined FP Fused Dot Product Unit

UTE

- Pipelined FP Fused Two-Term Dot Product Unit
- First stage (Critical path):
- Unpack
- Multiplier tree
- Second stage (Critical path):
- Close path significand align
- LZA
- Normalization
- Third stage (Critical path):
- Path Selection
- Addition
- Exponent Adjust
- Balanced latency for single precision: $0.65 \mathrm{~ns} /$ stage $(=1.5 \mathrm{GHz})$

Results

- Design Comparison
- Single Precision
- 45nm CMOS Standard Cell Library

	Traditional	Enhanced	Enhanced +Dual Path	Enhanced +Dual-Path +Pipeline
Area $\left(\boldsymbol{\mu m}^{\mathbf{2}}\right)$	$38,654(100 \%)$	$29,159(75 \%)$	$31,472(81 \%)$	$33,228(86 \%)$
Latency $(\mathbf{n s})$	$2.54(100 \%)$	$2.14(84 \%)$	$1.87(74 \%)$	$2.01(79 \%)$
Throughput $\mathbf{(1 / n s})$	$0.35(100 \%)$	$0.47(119 \%)$	$0.53(136 \%)$	$1.49(379 \%)$
Power $(\mathbf{m W})$	$20.77(100 \%)$	$15.17(73 \%)$	$16.16(78 \%)$	$16.94(82 \%)$

Results

UT We

- Pipeline Stages
- Single Precision
- 45nm CMOS Standard Cell Library

	Stage 1	Stage 2	Stage 3
Area $\left(\boldsymbol{\mu} \mathbf{m}^{\mathbf{2}}\right)$	$17,484(53 \%)$	$12,143(36 \%)$	$3,601(11 \%)$
Latency $(\mathbf{n s})$	$0.65(33 \%)$	$0.67(35 \%)$	$0.63(32 \%)$
Power $(\mathbf{m W})$	$8.96(53 \%)$	$6.41(38 \%)$	$1.57(9 \%)$

- Summary

- Three optimizations for an enhanced FP fused dot product unit
- New alignment scheme
- Early normalization and fast rounding
- Four-input LZA
\Rightarrow Reduces the latency by 15%, reduces Area and power by 25%
- Dual-path FP fused dot product unit
\Rightarrow Reduces the latency by 25%
- Pipelined FP fused dot product unit
\Rightarrow Increases the throughput by 2.8 times

Conclusion

- Trade-off

Category	Optimizations			
	New Alignment	Four-Input LZA	Dual-Path	Pipelining
Area	+	+	-	-
Latency	+	+	++	-
Throughput	+	+	++	+++
Power	+	+	-	-

References

[1] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, New York: IEEE, Inc., 2008.
[2] R. K. Montoye, E. Hokenek, and S. L. Runyon, "Design of the IBM RISC System/6000 Floating-Point Execution Unit," IBM Journal of Research \& Development, Vol. 34. pp. 59-70. 1990.
[3] E. Hokenek, R. K. Montoye and P. W. Cook, "Second-Generation RISC Floating Point with Multiply-Add Fused," IEEE Journal of Solid-State Circuits, vol. 25, pp. 1207 - 1213, 1990.
[4] T. Lang and J. D. Bruguera, "Floating-Point Fused Multiply-Add with Reduced Latency," IEEE Transactions on Computers, Vol. 53, pp. 988 - 1003, 2004.
[5] H. H. Saleh and E. E. Swartzlander, Jr., "A Floating-Point Fused Add-Subtract Unit," Proceedings of the 51st IEEE Midwest Symposium on Circuits and Systems, pp. 519 - 522, 2008.
[6] J. Sohn and E. E. Swartzlander, Jr., "Improved Architectures for a Fused Floating-Point Add-Subtract Unit," IEEE Transactions on Circuits and Systems-I, Vol. 59, pp. 2285 - 2291, 2012.
[7] H. H. Saleh and E. E. Swartzlander, Jr., "A Floating-Point Fused Dot- Product Unit," Proceedings of the IEEE International Conference on Computer Design, pp. 427 - 431, 2008.
[8] E. E. Swartzlander, Jr. and H. H. Saleh, "FFT Implementation with Fused Floating-Point Operations," IEEE Transactions on Computers, Vol. 61, pp. 284 - 288, 2010.
[9] E. E. Swartzlander, Jr. and H. H. Saleh, "Fused Floating-Point Arithmetic for DSP," Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp. 767 - 771, 2008.
[10] J. D. Bruguera and T. Lang, "Leading-One Prediction with Concurrent Position Correction," IEEE Transactions on Computers, vol. 48, pp. 1083 - 1097, 1999.
[11] R. Ji, Z. Ling, X. Zeng, B. Sui, L. Chen, J. Zhang, Y. Feng, and G. Luo, Comments on "Leading One Prediction with Concurrent Position Correction," IEEE Transactions on Computers, vol. 58, pp. 1726 - 1727, 2009.
[12] P. Kornerup, "Correcting the Normalization Shift of Redundant Binary Representations", IEEE Transactions on Computers, vol. 58, pp. 1435 - 1439, 2009.

Thank you

- IEEE-754 Standard for Floating-Point [1]
- $\mathbf{f p _ n u m b e r}=(-1)^{\text {sign }} \times 2^{\text {exponent }} \times$ significand
- sign $=0$ or 1
- exponent $=e-e_{\text {bias }}+1$ ($e=$ any integer between 0 and $2 \#$ of exponent bits)
- significand $=d_{p-1} d_{p-2} \ldots d_{2} d_{1} d_{0}\left(d_{i}=0\right.$ or $1, p=$ significand precision $)$

Format	Single Precision	Double Precision
Sign	1	1
Exponent	8	11
Significand	23	52
Total	32	64
Exponent Bias	127	1023
Exponent Range	$2^{-126}-2^{127}$	$2^{-1022}-2^{1023}$
Significand Precision	24	53

1	8	23
s	exponent	significand

Single Precision

Go Back
Double Precision

- Discrete vs. Fused Two-Term Dot Product

Go Back

- Massive Cancellation
- After the subtraction, MSBs (if it is 0) must be shifted for normalization
1.1000000111
- 1.0111111000
$\left.\begin{array}{l}0.0000001111 \\ 1.1110000000\end{array}\right] \ll 7$

Go Back

- Two-Input LZA for Floating-Point Adder [10]

- Pre-encoding for Two-input LZA
- $W=A-B$

$$
w_{i}=a_{i}-b_{i}, \quad w_{i} \in\{-1,0,1\},
$$

- $g_{i}=1$ if $w_{i}=1, \quad e_{i}=1$ if $w_{i}=0, \quad s_{i}=1$ if $w_{i}=\overline{1}$
- $f_{i}=e_{i-1}\left(g_{i} \bar{s}_{i+1}+s_{i} \bar{g}_{i+1}\right)+\bar{e}_{i-1}\left(s_{i} \bar{s}_{i+1}+g_{i} \bar{g}_{i+1}\right)$
- Leading Zeros and Encoding Pattern for W > 0

Go Back

W vector	Leading Zeros	Pre-encoding Pattern
$0^{k} 11(x)$	k	$e_{i-1} g_{i} g_{i+1}$
$0^{k} 10(1$ or 0$)$	k	$e_{i-1} g_{i} e_{i+1}$
$0^{k} 10^{l}(\overline{1})$	$k+1$	$e_{i-1} g_{i} e_{i+1}{ }^{*}$
$0^{k} 1 \overline{1}^{l} 1(x)$	$k+l$	$\bar{e}_{i-1} s_{i} g_{i+1}$
$0^{k} 1 \overline{1}^{l} 0(1$ or 0$)$	$k+l$	$\bar{e}_{i-1} s_{i} e_{i+1}$
$0^{k} 1 \overline{1}^{l} 0^{m}(\overline{1})$	$k+l+1$	$\bar{e}_{i-1} s_{i} e_{i+1}{ }^{*}$

* Correction needed

- LZA with concurrent correction [10]

Go Back

- Pre-Encoding Logic of LZA [10]

Go Back

- 25 bit LZD tree [4]

Go Back

- Concurrent Correction Tree for LZA [12]

Go Back

- Exponent Compare Logic

Go Back

- Operation Select

- op_sel $= \begin{cases}\frac{A B_{\text {sign }} \oplus C D_{\text {sign }}}{A B_{\text {sign }} \oplus C D_{\text {sign }}} & \text { if op }=a d d \\ \text { if op }=s u b\end{cases}$

Go Back

- Exponent Adjust Logic

Go Back

- Path Selection
- path_sel $=\left\{\begin{array}{cc}1 & \text { if }\left|A B_{\text {exp }}-C D_{\text {exp }}\right| \leq 2 \text { or op_sel }=0 \\ 0 & \text { otherwise }\end{array}\right.$

Go Back

- Exceptions

- overflow $=\left\{\begin{array}{lc}1 & \text { if exp } \geq \text { max_exp } \\ 0 & \text { otherwise }\end{array}\right.$
- underflow $= \begin{cases}1 & \text { if exp } \leq 0 \\ 0 & \text { otherwise }\end{cases}$
- inexact $=$ overflow || underflow || round_up

Go Back

- Close Path Significand Alignment

- $A B_{\text {aligned }}= \begin{cases}\left(A B_{\text {signif }}, 00\right) & \text { if } A B_{\text {exp }}-C D_{\text {exp }}=0,1,2 \\ \left(0, A B_{\text {signif }}, 0\right) & \text { if } A B_{\text {exp }}-C D_{\text {exp }}=-1 \\ \left(00, A B_{\text {signif }}\right) & \text { if } A B_{\text {exp }}-C D_{\text {exp }}=-2\end{cases}$
- $C D_{\text {aligned }}=\left\{\begin{array}{lc}\left(C D_{\text {signif }}, 00\right) & \text { if } A B_{\text {exp }}-C D_{\text {exp }}=2 \\ \left(0, C D_{\text {signif }}, 0\right) & \text { if } A B_{\text {exp }}-C D_{\text {exp }}=1 \\ \left(00, C D_{\text {signif }}\right) & \text { if } A B_{\text {exp }}-C D_{\text {exp }}=0,-1,-2\end{array}\right.$

Go Back

[^0]: * The error correction logic in [10] is modified by [11] and [12] to improve the accuracy and eliminate the redundancy, respectively.

