
Improved Architectures for a Floating-

Point Fused Dot Product Unit

Jongwook Sohn and Earl E. Swartzlander, Jr.

April 8th, 2013

Outline

 Introduction

 Traditional FP Fused Dot Product Unit

 An Enhanced FP Fused Dot Product Unit

• A New Alignment Scheme

• Early Normalization and Fast Rounding Scheme

• Four-Input LZA

 A Dual-Path FP Fused Dot Product Unit

• Far Path Logic

• Close Path Logic

 A Pipelined FP Fused Dot Product Unit

 Results

 Conclusion

2 ARITH21

Introduction

 Problem Statement

• Fact – Floating-point operations are widely used for advanced applications:

 3D graphics, multimedia, signal processing and scientific computations

• Problem – Floating-point operations require complex processes:

 Alignment, normalization and rounding

• Solution –Floating-point fused arithmetic units:

 FP Fused Multiply-Add [2] – [4], FP Fused Add-Subtract [5], [6] and FP Fused Two-

Term Dot Product [7]

• Proposal – Improved floating-point fused two-term dot product unit

ARITH21 3

Goto Backup

Traditional FP Fused Dot Product Unit

 Traditional FP Fused Two-Term Dot Product Unit [7]

• P = AB ± CD

• Useful for FFT butterfly and

complex multiplication

• Reduces area by 20%,

Reduces latency by 2%,

Improves accuracy

4 ARITH21

Goto Backup

Enhanced FP Fused Dot Product Unit

 Enhanced FP Fused Two-Term Dot Product Unit

• New alignment scheme

• Early normalization

& Fast rounding

• Four-input LZA

5 ARITH21

Goto Backup

Enhanced FP Fused Dot Product Unit

 New Alignment Scheme

6 ARITH21

Enhanced FP Fused Dot Product Unit

7 ARITH21

 Early Normalization* and Fast Rounding

* Previously proposed for the fused multiply-add unit with reduced latency [4].

Enhanced FP Fused Dot Product Unit

8 ARITH21

 Four-Input LZA

Goto Backup

Enhanced FP Fused Dot Product Unit

 Four-Input LZA

• Pre-encoding for Four-input LZA

 𝑊 = 𝐴 + 𝐵 − 𝐶 − 𝐷

𝑤𝑖 = 𝑎𝑖 + 𝑏𝑖 − 𝑐𝑖 − 𝑑𝑖 , 𝑤𝑖 ∈ −2,−1, 0, 1, 2

 𝑔𝑖 = 1 𝑖𝑓 𝑤𝑖 = 1, 𝑒𝑖 = 1 𝑖𝑓 𝑤𝑖 = 0, 𝑠𝑖 = 1 𝑖𝑓 𝑤𝑖 = 1

 𝑔𝑖 = 2𝑖 2𝑖+1 + 2 𝑖+1 + 1𝑖(1𝑖+1 + 0𝑖+1 + 1 𝑖+1) + 0𝑖2𝑖+1

 𝑒𝑖 = 2𝑖 1𝑖+1 + 0𝑖+1 + 1 𝑖+1 + 1𝑖 2𝑖+1 + 2 𝑖+1 + 0𝑖(1𝑖+1 + 0𝑖+1 + 1 𝑖+1) +

1 𝑖 2𝑖+1 + 2 𝑖+1 + 2 𝑖 1𝑖+1 + 0𝑖+1 + 1 𝑖+1

 𝑠𝑖 = 0𝑖2 𝑖+1 + 1 𝑖 1𝑖+1 + 0𝑖+1 + 1 𝑖+1 + 2 𝑖 2𝑖+1 + 2 𝑖+1

 𝑓𝑖 𝑝𝑜𝑠 = 𝑒𝑖−1𝑔𝑖𝑠 𝑖+1 + 𝑒 𝑖−1𝑠𝑖𝑠 𝑖+1 for 𝑊 > 0

 𝑓𝑖 𝑛𝑒𝑔 =𝑒𝑖−1𝑠𝑖𝑔 𝑖+1 + 𝑒 𝑖−1𝑔𝑖𝑔 𝑖+1 for 𝑊 < 0

 𝑓𝑖 =𝑒𝑖−1 𝑔𝑖𝑠 𝑖+1 + 𝑠𝑖𝑔 𝑖+1 + 𝑒 𝑖−1 𝑠𝑖𝑠 𝑖+1 + 𝑔𝑖𝑔 𝑖+1

Jongwook Sohn 9 ARITH21

Goto Backup

Enhanced FP Fused Dot Product Unit

 Four-Input LZA

• Leading Zeros and Pre-encoding Pattern for W > 0

• Concurrent correction logic is required [10] – [12]*

10 ARITH21

* The error correction logic in [10] is modified by [11] and [12] to improve the accuracy and

eliminate the redundancy, respectively.

W vector Leading Zeros

0k11(x) k

0k10(1 or 0)

0k10l(1)

k

k + 1

Pre-encoding Pattern

ei–1gigi+1

ei–1giei+1

ei–1giei+1*

0k11l1(x)

* Correction needed

k + l ei–1sigi+1

0k11l0(1 or 0) k + l ei–1siei+1

0k11l0m(1) k + l + 1 ei–1siei+1*

Dual-Path FP Fused Dot Product Unit

 Dual-Path FP Fused Two-Term Dot Product Unit

• Dual path algorithm

1) Far path:

|diffexp| > 2

2) Close path:

– 2 ≤ diffexp ≤ 2

• Far path skips normalization

• Close path skips alignment

11 ARITH21

* diffexp = Aexp + Bexp – Cexp – Dexp

Goto Backup

Dual-Path FP Fused Dot Product Unit

 Far Path Logic

• Significand swap

• Alignment & sticky

• Reduction Tree

12 ARITH21

Dual-Path FP Fused Dot Product Unit

 Close Path Logic

• Small alignment (≤ 2)

• Reduction Trees

• LZA & Normalization

13 ARITH21

Go Back

Pipelined FP Fused Dot Product Unit

 Pipelined FP Fused Two-Term Dot Product Unit

• First stage (Critical path):

 Unpack

 Multiplier tree

• Second stage (Critical path):

 Close path significand align

 LZA

 Normalization

• Third stage (Critical path):

 Path Selection

 Addition

 Exponent Adjust

• Balanced latency for single precision:

0.65ns/stage (= 1.5GHz)

14 ARITH21

Results

15 ARITH21

 Design Comparison

• Single Precision

• 45nm CMOS Standard Cell Library

Area (㎛2
)

Latency (ns)

Throughput (1/ns)

Power (mW)

38,654 (100%)

2.54 (100%)

0.35 (100%)

20.77 (100%)

29,159 (75%)

2.14 (84%)

0.47 (119%)

15.17 (73%)

Traditional Enhanced
Enhanced

+ Dual Path

Enhanced
+ Dual-Path
+ Pipeline

31,472 (81%)

1.87 (74%)

0.53 (136%)

16.16 (78%)

33,228 (86%)

2.01 (79%)

1.49 (379%)

16.94 (82%)

Results

16 ARITH21

 Pipeline Stages

• Single Precision

• 45nm CMOS Standard Cell Library

17,484 (53%) 12,143 (36%)

0.65 (33%) 0.67 (35%)

8.96 (53%) 6.41 (38%)

3,601 (11%)

0.63 (32%)

1.57 (9%)

Stage 1 Stage 2 Stage 3

Area (㎛2
)

Latency (ns)

Power (mW)

Conclusion

17 ARITH21

 Summary

• Three optimizations for an enhanced FP fused dot product unit

 New alignment scheme

 Early normalization and fast rounding

 Four-input LZA

 Reduces the latency by 15%, reduces Area and power by 25%

• Dual-path FP fused dot product unit

 Reduces the latency by 25%

• Pipelined FP fused dot product unit

 Increases the throughput by 2.8 times

Conclusion

 Trade-off

18 ARITH21

Category

Optimizations

New Alignment Four-Input LZA Dual-Path Pipelining

Area

Latency

Throughput

Power

+

+

+

+

+

+

+

+

–

++

++

–

–

–

+++

–

References

[1] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, New York: IEEE, Inc., 2008.

[2] R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the IBM RISC System/6000 Floating-Point

Execution Unit,” IBM Journal of Research & Development, Vol. 34. pp. 59 – 70. 1990.

[3] E. Hokenek, R. K. Montoye and P. W. Cook, “Second-Generation RISC Floating Point with Multiply-Add

Fused,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 1207 – 1213, 1990.

[4] T. Lang and J. D. Bruguera, "Floating-Point Fused Multiply-Add with Reduced Latency," IEEE Transactions

on Computers, Vol. 53, pp. 988 – 1003, 2004.

[5] H. H. Saleh and E. E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract Unit,” Proceedings of the 51st

IEEE Midwest Symposium on Circuits and Systems, pp. 519 – 522, 2008.

[6] J. Sohn and E. E. Swartzlander, Jr., “Improved Architectures for a Fused Floating-Point Add-Subtract Unit,”

IEEE Transactions on Circuits and Systems–I, Vol. 59, pp. 2285 – 2291, 2012.

[7] H. H. Saleh and E. E. Swartzlander, Jr., “A Floating-Point Fused Dot- Product Unit,” Proceedings of the

IEEE International Conference on Computer Design, pp. 427 – 431, 2008.

[8] E. E. Swartzlander, Jr. and H. H. Saleh, “FFT Implementation with Fused Floating-Point Operations,” IEEE

Transactions on Computers, Vol. 61, pp. 284 – 288, 2010.

19 ARITH21

References

20 ARITH21

[9] E. E. Swartzlander, Jr. and H. H. Saleh, “Fused Floating-Point Arithmetic for DSP,” Proceedings of the 42nd

Asilomar Conference on Signals, Systems and Computers, pp. 767 – 771, 2008.

[10] J. D. Bruguera and T. Lang, “Leading-One Prediction with Concurrent Position Correction,” IEEE

Transactions on Computers, vol. 48, pp. 1083 – 1097, 1999.

[11] R. Ji, Z. Ling, X. Zeng, B. Sui, L. Chen, J. Zhang, Y. Feng, and G. Luo, Comments on “Leading One

Prediction with Concurrent Position Correction,” IEEE Transactions on Computers, vol. 58, pp. 1726 – 1727,

2009.

[12] P. Kornerup, “Correcting the Normalization Shift of Redundant Binary Representations”, IEEE

Transactions on Computers, vol. 58, pp. 1435 – 1439, 2009.

Thank you

21 ARITH21

Backup

ARITH21

 IEEE-754 Standard for Floating-Point [1]

• 𝐟𝐩_𝐧𝐮𝐦𝐛𝐞𝐫 = (−𝟏)𝒔𝒊𝒈𝒏× 𝟐𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕 × 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒅

 sign = 0 or 1

 exponent = e – ebias + 1 (e = any integer between 0 and 2# of exponent bits)

 significand = dp-1dp-2 … d2d1d0 (di = 0 or 1, p = significand precision)

22

Go Back

Backup

23 ARITH21

 Discrete vs. Fused Two-Term Dot Product

Go Back

Backup

24 ARITH21

 Massive Cancellation

• After the subtraction, MSBs (if it is 0) must be shifted for normalization

1.1000000111

1.0111111000

0.0000001111

–

1.1110000000
<< 7

Go Back

Backup

 Two-Input LZA for Floating-Point Adder [10]

• Pre-encoding for Two-input LZA

 𝑊 = 𝐴 − 𝐵

𝑤𝑖 = 𝑎𝑖 − 𝑏𝑖 , 𝑤𝑖 ∈ −1, 0, 1 ,

 𝑔𝑖 = 1 𝑖𝑓 𝑤𝑖 = 1, 𝑒𝑖 = 1 𝑖𝑓 𝑤𝑖 = 0, 𝑠𝑖 = 1 𝑖𝑓 𝑤𝑖 = 1

 𝑓𝑖 =𝑒𝑖−1 𝑔𝑖𝑠 𝑖+1 + 𝑠𝑖𝑔 𝑖+1 + 𝑒 𝑖−1 𝑠𝑖𝑠 𝑖+1 + 𝑔𝑖𝑔 𝑖+1

• Leading Zeros and Encoding Pattern for W > 0

25 ARITH21

Go Back

W vector Leading Zeros

0k11(x) k

0k10(1 or 0)

0k10l(1)

k

k + 1

Pre-encoding Pattern

ei–1gigi+1

ei–1giei+1

ei–1giei+1*

0k11l1(x)

* Correction needed

k + l ei–1sigi+1

0k11l0(1 or 0) k + l ei–1siei+1

0k11l0m(1) k + l + 1 ei–1siei+1*

Backup

26 ARITH21

 LZA with concurrent correction [10]

Go Back

Backup

27 ARITH21

 Pre-Encoding Logic of LZA [10]

Go Back

Backup

28 ARITH21

 25 bit LZD tree [4]

Go Back

Backup

29 ARITH21

 Concurrent Correction Tree for LZA [12]

Go Back

Backup

30 ARITH21

 Exponent Compare Logic

Go Back

Backup

31 ARITH21

 Operation Select

• 𝑜𝑝_𝑠𝑒𝑙 =
𝐴𝐵𝑠𝑖𝑔𝑛 ⊕𝐶𝐷𝑠𝑖𝑔𝑛

𝐴𝐵𝑠𝑖𝑔𝑛 ⊕𝐶𝐷𝑠𝑖𝑔𝑛

𝑖𝑓 𝑜𝑝 = 𝑎𝑑𝑑
𝑖𝑓 𝑜𝑝 = 𝑠𝑢𝑏

Go Back

Backup

32 ARITH21

 Exponent Adjust Logic

Go Back

Backup

33 ARITH21

 Path Selection

• 𝑝𝑎𝑡ℎ_𝑠𝑒𝑙 =
1
0

𝑖𝑓 |𝐴𝐵𝑒𝑥𝑝 − 𝐶𝐷𝑒𝑥𝑝| ≤ 2 𝑜𝑟 𝑜𝑝_𝑠𝑒𝑙 = 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Go Back

Backup

34 ARITH21

 Exceptions

• 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 =
1
0

𝑖𝑓 𝑒𝑥𝑝 ≥ 𝑚𝑎𝑥_𝑒𝑥𝑝
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑢𝑛𝑑𝑒𝑟𝑓𝑙𝑜𝑤 =
1
0

𝑖𝑓 𝑒𝑥𝑝 ≤ 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑖𝑛𝑒𝑥𝑎𝑐𝑡 = 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 || 𝑢𝑛𝑑𝑒𝑟𝑓𝑙𝑜𝑤 || 𝑟𝑜𝑢𝑛𝑑_𝑢𝑝

Go Back

Backup

35 ARITH21

 Close Path Significand Alignment

• 𝐴𝐵𝑎𝑙𝑖𝑔𝑛𝑒𝑑 =

(𝐴𝐵𝑠𝑖𝑔𝑛𝑖𝑓, 00)

(0, 𝐴𝐵𝑠𝑖𝑔𝑛𝑖𝑓, 0)

(00, 𝐴𝐵𝑠𝑖𝑔𝑛𝑖𝑓)

𝑖𝑓 𝐴𝐵𝑒𝑥𝑝 − 𝐶𝐷𝑒𝑥𝑝 = 0, 1, 2

𝑖𝑓 𝐴𝐵𝑒𝑥𝑝 − 𝐶𝐷𝑒𝑥𝑝 = −1

𝑖𝑓 𝐴𝐵𝑒𝑥𝑝 − 𝐶𝐷𝑒𝑥𝑝 = −2

• 𝐶𝐷𝑎𝑙𝑖𝑔𝑛𝑒𝑑 =

(𝐶𝐷𝑠𝑖𝑔𝑛𝑖𝑓, 00)

(0, 𝐶𝐷𝑠𝑖𝑔𝑛𝑖𝑓, 0)

(00, 𝐶𝐷𝑠𝑖𝑔𝑛𝑖𝑓)

𝑖𝑓 𝐴𝐵𝑒𝑥𝑝 − 𝐶𝐷𝑒𝑥𝑝 = 2

𝑖𝑓 𝐴𝐵𝑒𝑥𝑝 − 𝐶𝐷𝑒𝑥𝑝 = 1

𝑖𝑓 𝐴𝐵𝑒𝑥𝑝 − 𝐶𝐷𝑒𝑥𝑝 = 0,−1, −2

Go Back

