

Improved Architectures for a Floating-Point Fused Dot Product Unit

Jongwook Sohn and Earl E. Swartzlander, Jr. April 8th, 2013

Outline

- Introduction
- Traditional FP Fused Dot Product Unit
- An Enhanced FP Fused Dot Product Unit
 - A New Alignment Scheme
 - Early Normalization and Fast Rounding Scheme
 - Four-Input LZA
- A Dual-Path FP Fused Dot Product Unit
 - Far Path Logic
 - Close Path Logic
- A Pipelined FP Fused Dot Product Unit
- Results
- Conclusion

- Problem Statement
 - Fact Floating-point operations are widely used for advanced applications:
 - 3D graphics, multimedia, signal processing and scientific computations
 - **Problem Floating-point operations require complex processes:**
 - Alignment, normalization and rounding
 - Solution Floating-point fused arithmetic units:
 - FP Fused Multiply-Add [2] [4], FP Fused Add-Subtract [5], [6] and FP Fused Two-Term Dot Product [7]
 - Proposal Improved floating-point fused two-term dot product unit

Traditional FP Fused Dot Product Unit

- UTEECE
- Traditional FP Fused Two-Term Dot Product Unit [7]
 - $P = AB \pm CD$
 - Useful for FFT butterfly and complex multiplication
 - Reduces area by 20%, Reduces latency by 2%, Improves accuracy

<u>Goto Backup</u>

Enhanced FP Fused Dot Product Unit

Enhanced FP Fused Two-Term Dot Product Unit

- New alignment scheme
- Early normalization
 & Fast rounding
- Four-input LZA

Goto Backup

Enhanced FP Fused Dot Product Unit

New Alignment Scheme

Traditional Alignment

New Alignment

Enhanced FP Fused Dot Product Unit

Early Normalization* and Fast Rounding

* f = number of significand bits

* Previously proposed for the fused multiply-add unit with reduced latency [4].

Four-Input LZA

Goto Backup

Four-Input LZA

• Pre-encoding for Four-input LZA

$$\bullet \quad W = A + B - C - D$$

 $w_i = a_i + b_i - c_i - d_i, \qquad w_i \in \{-2, -1, 0, 1, 2\}$

- $g_i = 1 \text{ if } w_i = 1, \quad e_i = 1 \text{ if } w_i = 0, \quad s_i = 1 \text{ if } w_i = \overline{1}$
- $g_i = 2_i(2_{i+1} + \overline{2}_{i+1}) + 1_i(1_{i+1} + 0_{i+1} + \overline{1}_{i+1}) + 0_i 2_{i+1}$
- $e_i = 2_i(1_{i+1} + 0_{i+1} + \overline{1}_{i+1}) + 1_i(2_{i+1} + \overline{2}_{i+1}) + 0_i(1_{i+1} + 0_{i+1} + \overline{1}_{i+1}) + \overline{1}_i(2_{i+1} + \overline{2}_{i+1}) + \overline{2}_i(1_{i+1} + 0_{i+1} + \overline{1}_{i+1})$
- $s_i = 0_i \overline{2}_{i+1} + \overline{1}_i (1_{i+1} + 0_{i+1} + \overline{1}_{i+1}) + \overline{2}_i (2_{i+1} + \overline{2}_{i+1})$
- $f_i(pos) = e_{i-1}g_i\bar{s}_{i+1} + \bar{e}_{i-1}s_i\bar{s}_{i+1}$ for W > 0
- $f_i(neg) = e_{i-1}s_i\bar{g}_{i+1} + \bar{e}_{i-1}g_i\bar{g}_{i+1}$ for W < 0
- $f_i = e_{i-1}(g_i \bar{s}_{i+1} + s_i \bar{g}_{i+1}) + \bar{e}_{i-1}(s_i \bar{s}_{i+1} + g_i \bar{g}_{i+1})$

Goto Backup

Four-Input LZA

• Leading Zeros and Pre-encoding Pattern for W > 0

W vector	Leading Zeros	Pre-encoding Pattern
$0^{k}11(x)$	k	$e_{i-1}g_ig_{i+1}$
$0^k 10(1 \text{ or } 0)$	k	$e_{i-1}g_ie_{i+1}$
$0^k 10^l (\bar{1})$	<i>k</i> + 1	$e_{i-1}g_ie_{i+1}^*$
$0^k 1 \overline{1}^l 1(x)$	k+l	$\bar{e}_{i-1}s_ig_{i+1}$
$0^k 1 \overline{1}^l 0(1 \text{ or } 0)$	k+l	$\bar{e}_{i-1}s_ie_{i+1}$
$0^k 1 \overline{1}^l 0^m (\overline{1})$	k + l + 1	$\bar{e}_{i-1}s_ie_{i+1}*$

* Correction needed

Concurrent correction logic is required [10] – [12]*

* The error correction logic in [10] is modified by [11] and [12] to improve the accuracy and eliminate the redundancy, respectively.

11

Dual-Path FP Fused Dot Product Unit

- Dual-Path FP Fused Two-Term Dot Product Unit
 - Dual path algorithm
 - 1) Far path:

 $|diff_{exp}| > 2$

2) Close path:

 $-2 \leq diff_{exp} \leq 2$

- Far path skips normalization
- Close path skips alignment

*
$$diff_{exp} = A_{exp} + B_{exp} - C_{exp} - D_{exp}$$

<u>Goto Backup</u>

Dual-Path FP Fused Dot Product Unit

- Far Path Logic
 - Significand swap
 - Alignment & sticky
 - Reduction Tree

Dual-Path FP Fused Dot Product Unit

- Close Path Logic
 - Small alignment (≤ 2)
 - Reduction Trees

Go Back

ARITH21

LZA & Normalization

Pipelined FP Fused Dot Product Unit

Pipelined FP Fused Two-Term Dot Product Unit

- First stage (Critical path):
 - Unpack
 - Multiplier tree
- Second stage (Critical path):
 - Close path significand align
 - LZA
 - Normalization
- Third stage (Critical path):
 - Path Selection
 - Addition
 - Exponent Adjust
- Balanced latency for single precision:
 0.65ns/stage (= 1.5GHz)

Results

Design Comparison

- Single Precision
- 45nm CMOS Standard Cell Library

	Traditional	Enhanced	Enhanced + Dual Path	Enhanced + Dual-Path + Pipeline
Area (µm ²)	38,654 (100%)	29,159 (75%)	31,472 (81%)	33,228 (86%)
Latency (ns)	2.54 (100%)	2.14 (84%)	1.87 (74%)	2.01 (79%)
Throughput (1/ns)	0.35 (100%)	0.47 (119%)	0.53 (136%)	1.49 (379%)
Power (mW)	20.77 (100%)	15.17 (73%)	16.16 (78%)	16.94 (82%)

Results

Pipeline Stages

• Single Precision

• 45nm CMOS Standard Cell Library

	Stage 1	Stage 2	Stage 3
Area (µm ²)	17,484 (53%)	12,143 (36%)	3,601 (11%)
Latency (ns)	0.65 (33%)	0.67 (35%)	0.63 (32%)
Power (mW)	8.96 (53%)	6.41 (38%)	1.57 (9%)

Conclusion

Summary

- Three optimizations for an enhanced FP fused dot product unit
 - New alignment scheme
 - Early normalization and fast rounding
 - Four-input LZA

 \Rightarrow Reduces the latency by 15%, reduces Area and power by 25%

• Dual-path FP fused dot product unit

 \Rightarrow Reduces the latency by 25%

• Pipelined FP fused dot product unit

 \Rightarrow Increases the throughput by 2.8 times

Trade-off

	Optimizations			
Category	New Alignment	Four-Input LZA	Dual-Path	Pipelining
Area	+	+	_	-
Latency	+	+	++	_
Throughput	+	+	++	+++
Power	+	+	_	-

References

- [1] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, New York: IEEE, Inc., 2008.
- [2] R. K. Montoye, E. Hokenek, and S. L. Runyon, "Design of the IBM RISC System/6000 Floating-Point Execution Unit," IBM Journal of Research & Development, Vol. 34. pp. 59 70. 1990.
- [3] E. Hokenek, R. K. Montoye and P. W. Cook, "Second-Generation RISC Floating Point with Multiply-Add Fused," IEEE Journal of Solid-State Circuits, vol. 25, pp. 1207 1213, 1990.
- [4] T. Lang and J. D. Bruguera, "Floating-Point Fused Multiply-Add with Reduced Latency," IEEE Transactions on Computers, Vol. 53, pp. 988 1003, 2004.
- [5] H. H. Saleh and E. E. Swartzlander, Jr., "A Floating-Point Fused Add-Subtract Unit," Proceedings of the 51st IEEE Midwest Symposium on Circuits and Systems, pp. 519 – 522, 2008.
- [6] J. Sohn and E. E. Swartzlander, Jr., "Improved Architectures for a Fused Floating-Point Add-Subtract Unit," IEEE Transactions on Circuits and Systems–I, Vol. 59, pp. 2285 – 2291, 2012.
- [7] H. H. Saleh and E. E. Swartzlander, Jr., "A Floating-Point Fused Dot- Product Unit," Proceedings of the IEEE International Conference on Computer Design, pp. 427 431, 2008.
- [8] E. E. Swartzlander, Jr. and H. H. Saleh, "FFT Implementation with Fused Floating-Point Operations," IEEE Transactions on Computers, Vol. 61, pp. 284 288, 2010.

References

[9] E. E. Swartzlander, Jr. and H. H. Saleh, "Fused Floating-Point Arithmetic for DSP," Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp. 767 – 771, 2008.

[10] J. D. Bruguera and T. Lang, "Leading-One Prediction with Concurrent Position Correction," IEEE Transactions on Computers, vol. 48, pp. 1083 – 1097, 1999.

[11] R. Ji, Z. Ling, X. Zeng, B. Sui, L. Chen, J. Zhang, Y. Feng, and G. Luo, Comments on "Leading One Prediction with Concurrent Position Correction," IEEE Transactions on Computers, vol. 58, pp. 1726 – 1727, 2009.

[12] P. Kornerup, "Correcting the Normalization Shift of Redundant Binary Representations", IEEE Transactions on Computers, vol. 58, pp. 1435 – 1439, 2009.

Thank you

- IEEE-754 Standard for Floating-Point [1]
 - **fp_number** = $(-1)^{sign} \times 2^{exponent} \times significand$
 - *sign* = 0 or 1
 - *exponent* = $e e_{bias} + 1$ (e = any integer between 0 and 2# of exponent bits)
 - significand = $d_{p-1}d_{p-2} \dots d_2d_1d_0$ ($d_i = 0$ or 1, p = significand precision)

Format	Single Precision	Double Precision
Sign	1	1
Exponent	8	11
Significand	23	52
Total	32	64
Exponent Bias	127	1023
Exponent Range	$2^{-126} - 2^{127}$	$2^{-1022} - 2^{1023}$
Significand Precision	24	53

<u>Go Back</u>

Double Precision

Discrete vs. Fused Two-Term Dot Product

- Massive Cancellation
 - After the subtraction, MSBs (if it is 0) must be shifted for normalization

1.1000000111 - 1.0111111000 0.0000001111 1.1110000000 - <7

- Two-Input LZA for Floating-Point Adder [10]
 - Pre-encoding for Two-input LZA
 - W = A B

 $w_i = a_i - b_i, \qquad w_i \in \{-1, 0, 1\},$

- $g_i = 1 \text{ if } w_i = 1, \quad e_i = 1 \text{ if } w_i = 0, \quad s_i = 1 \text{ if } w_i = \overline{1}$
- $f_i = e_{i-1}(g_i \bar{s}_{i+1} + s_i \bar{g}_{i+1}) + \bar{e}_{i-1}(s_i \bar{s}_{i+1} + g_i \bar{g}_{i+1})$
- Leading Zeros and Encoding Pattern for W > 0

W vector	Leading Zeros	Pre-encoding Pattern
$0^{k}11(x)$	k	$e_{i-1}g_ig_{i+1}$
$0^k 10(1 \text{ or } 0)$	k	$e_{i-1}g_ie_{i+1}$
$0^k 10^l (\bar{1})$	<i>k</i> + 1	$e_{i-1}g_ie_{i+1}*$
$0^k 1 \overline{1}^l 1(x)$	k+l	$\bar{e}_{i-1}s_ig_{i+1}$
$0^k 1 \overline{1}^l 0(1 \text{ or } 0)$	k+l	$\bar{e}_{i-1}s_ie_{i+1}$
$0^k 1 \overline{1}^l 0^m (\overline{1})$	k + l + 1	$\bar{e}_{i-1}s_ie_{i+1}*$

* Correction needed

LZA with concurrent correction [10]

Pre-Encoding Logic of LZA [10]

• 25 bit LZD tree [4]

Concurrent Correction Tree for LZA [12]

Exponent Compare Logic

Operation Select

•
$$op_sel = \begin{cases} AB_{sign} \oplus CD_{sign} & if op = add \\ \overline{AB_{sign} \oplus CD_{sign}} & if op = sub \end{cases}$$

Exponent Adjust Logic

Path Selection

•
$$path_sel = \begin{cases} 1 & if |AB_{exp} - CD_{exp}| \le 2 \text{ or } op_sel = 0 \\ 0 & otherwise \end{cases}$$

Exceptions

•
$$overflow = \begin{cases} 1 & if exp \ge max_exp \\ 0 & otherwise \end{cases}$$

•
$$underflow = \begin{cases} 1 & if exp \leq 0 \\ 0 & otherwise \end{cases}$$

inexact = overflow || underflow || round_up

Close Path Significand Alignment

•
$$AB_{aligned} = \begin{cases} (AB_{signif}, 00) & if AB_{exp} - CD_{exp} = 0, 1, 2\\ (0, AB_{signif}, 0) & if AB_{exp} - CD_{exp} = -1\\ (00, AB_{signif}) & if AB_{exp} - CD_{exp} = -2 \end{cases}$$

•
$$CD_{aligned} = \begin{cases} (CD_{signif}, 00) & if AB_{exp} - CD_{exp} = 2\\ (0, CD_{signif}, 0) & if AB_{exp} - CD_{exp} = 1\\ (00, CD_{signif}) & if AB_{exp} - CD_{exp} = 0, -1, -2 \end{cases}$$

