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An FPU generator in 2013?!

4800 articles in IEEE Xplore

When you search for floating point

After all these papers and 44 years of ARITH, 

 It is still pretty hard to design an FPU

One size doesn’t fit all.

CPUs: 10s of FPUs, Double Precision, Low Latency

GPUs:1000s of FPUs, Single Precision, High Throughput

Mobile: 100s of FPUs, Half-Precision, Low power
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Converting the problem to a solution

Procedurally encode this huge body of existing tricks

Incorporate this knowledge into parameterized generators

These are organized hierarchically

Use optimization to find best solution for your target

Generate an FPU for every different requirement

Precision

Energy Efficiency

 Latency/Throughput
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But how to build a generator?

There is no magic 

bullet.

Need to optimize at all 

design levels

Used our Genesis2 

generator language
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Capturing the designer knowledge: 
Abstraction

This is a multiplier

The problem is that 

many tricks exists, 

at arch, uarch, 

circuit and layout 

levels

A generator 

enabled us to 

encode them all

The results 

surprised us!
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Q1: Booth encoding: 
Which is better for energy efficiency?

Booth 2

13 Partial Products

Booth 3

9 Partial Products 

 Smaller Tree

Slow 3x multiple Generation
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A1: It’s about the area

Booth 2

ABooth2_mux= 0.625 ACSA

Atotal ≈ 
𝟏

𝟐
(1+0.625) n2 ACSA

= 0.8125 n2 ACSA

Booth 3

ABooth3_mux= ACSA

Atotal ≈ 
𝟏

𝟑
(1+1) n2 ACSA

= 0.6667 n2 ACSA
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A1: It’s about the area

Booth 2

ABooth2_mux= 0.5 ACSA

Atotal ≈ 
𝟏

𝟐
(1+0.5) n2 ACSA

= 0.75 n2 ACSA

Booth 3

ABooth3_mux= ACSA

Atotal ≈ 
𝟏

𝟑
(1+1) n2 ACSA

= 0.6667 n2 ACSA
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Q2: Partial products reduction:
What are the most important factors?

The combining element

 3:2 Counter

 4:2 Compressors

 7:3 counter

Number of Levels of CSA in tree

Wallace (shortest)

Trees: Overturned Staircase, ZM

Routing and wire tracks of the tree
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A2: It matters how counters are 
connected!

This is a Double Precision Wallace Booth 2 multiplier tree

Designer insight: 

 ‘Sum’ output takes 1 unit delay and ‘Carry’ output takes 0.5 unit delay

Balancing the interconnection of sum and carries 

Lets 7 levels of CSA take only 5.5 CSA delays
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A2: CSA simplest and most powerful
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A2: Layout matters!

Adding layout hints at the generator level 

Where the knowledge is

Pass them through to layout

Enables quick exploration of many layout scenarios
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Multiplier Block 

(only)



Putting it all together
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Resulting Efficient Designs for Double precision



A2: Wires matter!
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For quad precision, long wires result in OS trees becoming 

more energy efficient.
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Q3: What is the best FPU architecture?
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A3: It depends..

For Latency For Throughput
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Q4: What about my special feature?

1. Can we reuse a double-precision multiplier as two 

single precision?

2. How hard would it be to add this “smart” to FPGen?

 Turns out that in a generator, it is hard, but not that hard…
ab

ΣPP[i] = A*B ΣPP’[i] = {b*d , a*c}

c

d

a*c

b*d

b*c

a*d

0

b*d 0

a*c
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A4: Yes, added multiple precision support

Overhead can be quite small
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OS1 Tree Wallace Tree



Conclusion

Details matter!

Booth mux area

Wiring of CSAs…

Built a generator that incorporates this knowledge

Used it to explore optimal design

Results are better than SoA FP IP blocks

 (multiple precision, pipelinig, ..etc.)

You can try your ideas too.
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THANK YOU!

Visit 

http://vlsiweb.stanford.edu/fpgen/

http://vlsiweb.stanford.edu/fpgen/

