
http://www.c2s2.org

Sameh Galal, Ofer Shacham, John S. Brunhaver II, 

Jing Pu, Artem Vassiliev and Mark Horowitz

Stanford University

FPU Generator For Design Space Exploration



An FPU generator in 2013?!

4800 articles in IEEE Xplore

When you search for floating point

After all these papers and 44 years of ARITH, 

 It is still pretty hard to design an FPU

One size doesn’t fit all.

CPUs: 10s of FPUs, Double Precision, Low Latency

GPUs:1000s of FPUs, Single Precision, High Throughput

Mobile: 100s of FPUs, Half-Precision, Low power

2



Converting the problem to a solution

Procedurally encode this huge body of existing tricks

Incorporate this knowledge into parameterized generators

These are organized hierarchically

Use optimization to find best solution for your target

Generate an FPU for every different requirement

Precision

Energy Efficiency

 Latency/Throughput

3



But how to build a generator?

There is no magic 

bullet.

Need to optimize at all 

design levels

Used our Genesis2 

generator language

4



Capturing the designer knowledge: 
Abstraction

This is a multiplier

The problem is that 

many tricks exists, 

at arch, uarch, 

circuit and layout 

levels

A generator 

enabled us to 

encode them all

The results 

surprised us!
5



Q1: Booth encoding: 
Which is better for energy efficiency?

Booth 2

13 Partial Products

Booth 3

9 Partial Products 

 Smaller Tree

Slow 3x multiple Generation

6



A1: It’s about the area

Booth 2

ABooth2_mux= 0.625 ACSA

Atotal ≈ 
𝟏

𝟐
(1+0.625) n2 ACSA

= 0.8125 n2 ACSA

Booth 3

ABooth3_mux= ACSA

Atotal ≈ 
𝟏

𝟑
(1+1) n2 ACSA

= 0.6667 n2 ACSA

7



A1: It’s about the area

Booth 2

ABooth2_mux= 0.5 ACSA

Atotal ≈ 
𝟏

𝟐
(1+0.5) n2 ACSA

= 0.75 n2 ACSA

Booth 3

ABooth3_mux= ACSA

Atotal ≈ 
𝟏

𝟑
(1+1) n2 ACSA

= 0.6667 n2 ACSA

8



Q2: Partial products reduction:
What are the most important factors?

The combining element

 3:2 Counter

 4:2 Compressors

 7:3 counter

Number of Levels of CSA in tree

Wallace (shortest)

Trees: Overturned Staircase, ZM

Routing and wire tracks of the tree

9



A2: It matters how counters are 
connected!

This is a Double Precision Wallace Booth 2 multiplier tree

Designer insight: 

 ‘Sum’ output takes 1 unit delay and ‘Carry’ output takes 0.5 unit delay

Balancing the interconnection of sum and carries 

Lets 7 levels of CSA take only 5.5 CSA delays

10



A2: CSA simplest and most powerful

11



A2: Layout matters!

Adding layout hints at the generator level 

Where the knowledge is

Pass them through to layout

Enables quick exploration of many layout scenarios

12

Multiplier Block 

(only)



Putting it all together

13

Resulting Efficient Designs for Double precision



A2: Wires matter!

14

For quad precision, long wires result in OS trees becoming 

more energy efficient.



+

×


SB

ß

Leading

Zero

Anticipator

+1 ?

SA SC
ECEBEA

3:2 CSA

+
53

53 53

106106159

159

53

53

Q3: What is the best FPU architecture?

Cascade (CMA)

FAR 

PATH
CLOSE

PATH

EAC

 Adder
(106 bits)

Significand Result

2:1 Mux
(106 bits)

2:1 Mux
(106 bits)

+
(106 bits)

Partial

Product

Array

Accumulation Bypass

Aligner
(159 bits)

SB

‒
(106 bits)

Normalizer
(106 bits)

Leading

Zero

Anticipator
(106 bits)

2:1 Mux
(53 bits)

Rounder
(53 bits)

Multiply-Add Bypass

SA SC

Shift 1
(53 bits)

Subtract

Exp Diff ≤1

MULTIPLIER

ADDER

Exponent 

Difference

EACEB

A
c
c
u

m
u

la
ti
o

n
 B

y
p

a
s
s

Fused(FMA)

15



A3: It depends..

For Latency For Throughput

16



Q4: What about my special feature?

1. Can we reuse a double-precision multiplier as two 

single precision?

2. How hard would it be to add this “smart” to FPGen?

 Turns out that in a generator, it is hard, but not that hard…
ab

ΣPP[i] = A*B ΣPP’[i] = {b*d , a*c}

c

d

a*c

b*d

b*c

a*d

0

b*d 0

a*c

17



A4: Yes, added multiple precision support

Overhead can be quite small

18

OS1 Tree Wallace Tree



Conclusion

Details matter!

Booth mux area

Wiring of CSAs…

Built a generator that incorporates this knowledge

Used it to explore optimal design

Results are better than SoA FP IP blocks

 (multiple precision, pipelinig, ..etc.)

You can try your ideas too.

19



THANK YOU!

Visit 

http://vlsiweb.stanford.edu/fpgen/

http://vlsiweb.stanford.edu/fpgen/

